scholarly journals Computation of Effective Elastic Properties Using a Three-Dimensional Semi-Analytical Approach for Transversely Isotropic Nanocomposites

2021 ◽  
Vol 11 (4) ◽  
pp. 1867
Author(s):  
Monica Tapia ◽  
Y. Espinosa-Almeyda ◽  
R. Rodríguez-Ramos ◽  
José A. Otero

A three-dimensional semi-analytical finite element method (SAFEM-3D) is implemented in this work to calculate the effective properties of periodic elastic-reinforced nanocomposites. Different inclusions are also considered, such as discs, ellipsoidals, spheres, carbon nanotubes (CNT) and carbon nanowires (CNW). The nanocomposites are assumed to have isotropic or transversely isotropic inclusions embedded in an isotropic matrix. The SAFEM-3D approach is developed by combining the two-scale asymptotic homogenization method (AHM) and the finite element method (FEM). Statements regarding the homogenized local problems on the periodic cell and analytical expressions of the effective elastic coefficients are provided. Homogenized local problems are transformed into boundary problems over one-eighth of the cell. The FEM is implemented based on the principle of the minimum potential energy. The three-dimensional region (periodic cell) is divided into a finite number of 10-node tetrahedral elements. In addition, the effect of the inclusion’s geometrical shape, volume fraction and length on the effective elastic properties of the composite with aligned or random distributions is studied. Numerical computations are developed and comparisons with other theoretical results are reported. A comparison with experimental values for CNW nanocomposites is also provided, and good agreement is obtained.

Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1221
Author(s):  
Miran Merhar

This research article examines the application of various methods to determine the effective elastic properties of beech veneer-wood composites. Using laminate theory, the theoretically calculated effective values of the in-plane and out-of-plane modulus of elasticity as well as shear modulus are compared with the values determined from the natural frequencies of flexural, torsional and longitudinal vibrations of samples having different orientations and numbers of composite layers. The samples are also modelled using the finite element method, and their natural frequencies are calculated by the modal analysis. Research has shown that the laminate theory, which is well established and applied in the world of synthetic composites, can also be applied to beech plywood composites, where the theoretically calculated effective values can be up to 15% higher. Similarly, due to the higher calculated effective elastic properties, higher natural frequencies of flexural, torsional and longitudinal vibrations are also calculated by the finite element method.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1421
Author(s):  
Michał Szulborski ◽  
Sebastian Łapczyński ◽  
Łukasz Kolimas ◽  
Łukasz Kozarek ◽  
Desire Dauphin Rasolomampionona ◽  
...  

In this paper, a detailed three-dimensional, transient, finite element method of fuse link NH000 gG 100 A is proposed. The thermal properties during the operation of the fuses under nominal (100 A) and custom conditions (110 and 120 A) are the main focus of the analyses that were conducted. The work concerns both the outside elements of the fuse link (ceramic body) and the elements inside (current circuit). Both the distribution of the electric current and its impact on the temperature of the construction parts of the fuses during their operating mode have been described. Temperature distribution, power losses and energy dissipation were measured using a numerical model. In order to verify and validate the model, two independent teams of scientists executed experimental research, during which the temperature was measured on different parts of the device involving the rated current. Finally, the two sets of results were put together and compared with those obtained from the simulation tests. A possible significant correlation between the results of the empirical tests and the simulation work was highlighted.


2020 ◽  
Vol 17 (3) ◽  
pp. 349-360
Author(s):  
Xiang-Zhong Chen ◽  
Yun-He Liu ◽  
Chang-Chun Yin ◽  
Chang-Kai Qiu ◽  
Jie Zhang ◽  
...  

2013 ◽  
Vol 387 ◽  
pp. 159-163
Author(s):  
Yi Chern Hsieh ◽  
Minh Hai Doan ◽  
Chen Tai Chang

We present the analyses of dynamics behaviors on a stroller wheel by three dimensional finite element method. The vibration of the wheel system causes by two different type barriers on the road as an experiment design to mimic the real road conditions. In addition to experiment analysis, we use two different packages to numerically simulate the wheel system dynamics activities. Some of the simulation results have good agreement with the experimental data in this research. Other interesting data will be measured and analyzed by us for future study and we will investigate them by using adaptive finite element method for increasing the precision of the computation results.


Sign in / Sign up

Export Citation Format

Share Document