scholarly journals Online Distributed Measurement of Dark I-V Curves in Photovoltaic Plants

2021 ◽  
Vol 11 (4) ◽  
pp. 1924
Author(s):  
José Ignacio Morales-Aragonés ◽  
María del Carmen Alonso-García ◽  
Sara Gallardo-Saavedra ◽  
Víctor Alonso-Gómez ◽  
José Lorenzo Balenzategui ◽  
...  

The inspection techniques for defects in photovoltaic modules are diverse. Among them, the inspection with measurements using current–voltage (I-V) curves is one of the most outstanding. I-V curves, which can be carried under illumination or in dark conditions, are widely used to detect certain defects in photovoltaic modules. In a traditional way, these measurements are carried out by disconnecting the photovoltaic module from the string inside the photovoltaic plant. In this work, the researchers propose a methodology to perform online dark I-V curves of modules in photovoltaic plants without the need of disconnecting them from the string. For this, a combination of electronic boards in the photovoltaic modules and a bidirectional inverter are employed. The results are highly promising, and this methodology could be widely used in upcoming photovoltaic plants.

Author(s):  
Mansour Zegrar ◽  
M’hamed Houari Zerhouni ◽  
Mohamed Tarik Benmessaoud ◽  
Fatima Zohra Zerhouni

In recent years, solar photovoltaic energy is becoming very important in the generation of green electricity. Solar photovoltaic effect directly converts solar radiation into electricity. The output of the photovoltaic module MPV depends on several factors as solar irradiation and cell temperature. A curve tracer is a system used to acquire the PV current-voltage characteristics, in real time, in an efficient manner. The shape of the I-V curve gives useful information about the possible anomalies of a PV device. This paper describes an experimental system developed to measure the current–voltage curve of a MPV under real conditions. The measurement is performed in an automated way. This present paper presents the design, and the construction of I-V simple curve tracer for photovoltaic modules. This device is important for photovoltaic (PV) performance assessment for the measurement, extraction, elaboration and diagnose of entire current-voltage I-V curves for several photovoltaic modules. This system permits to sweep the entire I-V curve, in short time, with different climatic and loads conditions. An experimental test bench is described. This tracer is simple and the experimental results present good performance. Simulation and experimental tests have been carried out. Experimental results presented good performance.


2018 ◽  
Vol 26 (1) ◽  
pp. 77-82 ◽  
Author(s):  
A. V. Ivanchenko ◽  
A. S. Tonkoshkur ◽  
S. V. Mazurik

The results of experimental study of the transformation of the light current-voltage and volt-watt characteristics for the parallel connections of photovoltaic modules when using “PolySwitch” polymer resettable fuses are given. The conditions for selecting such fuses which allow their correctly triggering and minimize the current overload are formulated and experimentally verified. It is established that if resettable fuses are connected in series to the circuits of all photovoltaic modules, which are connected in parallel thus forming a unit, this prevents such a situation as the complete loss of electrical energy generated by this unit due to the short circuit of one of its modules. At the fuse triggering the total power loss of the unit of  parallelly connected photovoltaic modules is mainly determined by the decrease of its current by the amount that is equal to the current of the disconnected photovoltaic module.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1283
Author(s):  
José Ignacio Morales-Aragonés ◽  
Miguel Dávila-Sacoto ◽  
Luis G. González ◽  
Víctor Alonso-Gómez ◽  
Sara Gallardo-Saavedra ◽  
...  

Current–voltage (I–V) curve tracers are used for measuring voltage and current in photovoltaic (PV) modules. I–V curves allow identifying certain faults in the photovoltaic module, as well as quantifying the power performance of the device. I–V curve tracers are present in different topologies and configurations, by means of rheostats, capacitive loads, electronic loads, transistors, or by means of DC–DC converters. This article focuses on presenting all these configurations. The paper shows the electrical parameters to which the electronic elements of the equipment are exposed using LTSpice, facilitating the appropriate topology selection. Additionally, a comparison has been included between the different I–V tracers’ topologies, analyzing their advantages and disadvantages, considering different factors such as their flexibility, modularity, cost, precision, speed or rating, as well as the characteristics of the different DC–DC converters.


2020 ◽  
Vol 10 (7) ◽  
pp. 2575
Author(s):  
Mariusz T. Sarniak

In this paper, the usefulness of photovoltaic modules built of half cells for partially obstructed photovoltaic (PV) installations was analyzed based on verified simulation studies. The parameters of these modules are similar to the classic, but the internal structure is different. Instead of 60 cells in a typical classic PV module, there are twice as many cells in modules with half cells. A simulation model was built in the Matlab/Simulink engineering calculations package, using the “Solar Cell” component, which is a double-diode PV cell replacement model. The simulation model reflects the internal structure of the PV module from half cells so that the output current is divided into two equal parts inside, and the structure of the module is divided into six sections. Simulation tests were performed for the same parameters that were measured during actual measurements of the current–voltage characteristics of the partially shaded PV module. Verification tests were carried out for the photovoltaic module—JAM60S03-320/PR—using the I–V 400 meter. Four different cases of partial shading of the module were verified and one for the case of no shading, but in conditions different from the standard, given by the manufacturer.


2020 ◽  
Vol 4 (41) ◽  
pp. 51-56
Author(s):  
DMITRIY STREBKOV ◽  
◽  
NATAL’YA FILIPPCHENKOVA ◽  

In the field of energy supply to agro-industrial facilities, there is an increasing interest in the development of structures and engineering systems using renewable energy sources, including solar concentrator thermal and photovoltaic modules that combine photovoltaic modules and solar collectors in one structure. The use of the technology of concentrator heat and photovoltaic modules makes it possible to increase the electrical performance of solar cells by cooling them during operation, and significantly reduces the need for centralized electricity and heat supply to enterprises of the agroindustrial complex. (Research purpose) The research purpose is in numerical modeling of thermal processes occurring in a solar concentrator heat-photovoltaic module. (Materials and methods) Authors used analytical methods for mathematical modeling of a solar concentrator heat and photovoltaic module. Authors implemented a mathematical model of a solar concentrator heat and photovoltaic module in the ANSYS Fluent computer program. The distribution contours of temperature and pressure of the coolant in the module channel were obtained for different values of the coolant flow rate at the inlet. The verification of the developed model of the module on the basis of data obtained in an analytical way has been performed. (Results and discussion) The results of comparing the calculated data with the results of computer modeling show a high convergence of the information obtained with the use of a computer model, the relative error is within acceptable limits. (Conclusions) The developed design of the solar concentrator heat and photovoltaic module provides effective cooling of photovoltaic cells (the temperature of photovoltaic cells is in the operating range) with a module service life of at least twenty-five years. The use of a louvered heliostat in the developed design of a solar concentrator heat and photovoltaic module can double the performance of the concentrator.


2018 ◽  
Vol 3 (4) ◽  
pp. 190-200
Author(s):  
B. Benabdelkrim ◽  
A. Benatillah

The study of photovoltaic systems (PV) in an efficient manner requires a precise knowledge of the I-V characteristic curves of PV modules. An accurate current-voltage (I-V) model of PV modules is inherently implicit and non-linear and calls for iterative computations to obtain an analytical expression of current as a function of voltage. In this paper, numerical approaches are proposed to forecast the PV modules performance for engineering applications. The proposed approaches were implemented in a Matlab script and the results have been compared with the datasheet values provided by manufacturers in standard test conditions (STC). These approaches permit to extract the unknown parameters and also allow quantifying the effects of module temperature and irradiance on key cells parameters. In this work, a comparative study of the performance characteristics for different modules thin films and solid is analyzed by a single-diode equivalent circuit using four- and five-parameter models and two diode model.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


2015 ◽  
Vol 785 ◽  
pp. 220-224 ◽  
Author(s):  
Jin Chuan Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok

This paper presents the investigation of partial shading characteristics of mono-crystalline and poly-crystalline photovoltaic module connected in series. Simulink models are developed to assist the investigation to determine the ideality factor for mono-crystalline and poly-crystalline photovoltaic module. Commercially available mono-crystalline and poly-crystalline photovoltaic module are used to extract measurable parameters for the model to study the behaviour of I-V curve. Measurements have been conducted for the investigation includingmono-crystalline only, poly-crystalline only, both unshaded, mono-crystalline shaded and poly-crystalline shaded. This paper contributes to the understanding of partial shading characteristics of different materials presence in photovoltaic string.


2017 ◽  
Vol 21 (2) ◽  
pp. 915-923 ◽  
Author(s):  
Hafiz Ali ◽  
Muhammad Zafar ◽  
Muhammad Bashir ◽  
Muhammad Nasir ◽  
Muzaffar Ali ◽  
...  

The air borne dust deposited on the surface of photovoltaic module influence the transmittance of solar radiations from the photovoltaic modules glazing surface. This experimental work aimed to investigate the effect of dust deposited on the surface of two different types of photovoltaic modules (monocrystalline silicon and polycrystalline silicon). Two modules of each type were used and one module from each pair was left exposed to natural atmosphere for three months of winter in Taxila, Pakistan. Systematic series of measurements were conducted for the time period of three months corresponding to the different dust densities. The difference between the output parameters of clean and dirty modules provided the information of percentage loss at different dust densities. The dust density deposited on the modules surface was 0.9867 mg/cm2 at the end of the study. The results showed that dust deposition has strong impact on the performance of photovoltaic modules. The monocrystalline and polycrystalline modules showed about 20% and 16% decrease of average output power, respectively, compared to the clean modules of same type. It was found that the reduction of module efficiency (?clean ? ?dirtv) in case of monocrystalline and polycrystalline module was 3.55% and 3.01%, respectively. Moreover the loss of output power and module efficiency in monocrystalline module was more compared to the polycrystalline module.


Sign in / Sign up

Export Citation Format

Share Document