scholarly journals In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies

2021 ◽  
Vol 11 (4) ◽  
pp. 1939
Author(s):  
Alessia Milano ◽  
Alex Vergara Gil ◽  
Enrico Fabrizi ◽  
Marta Cremonesi ◽  
Ivan Veronese ◽  
...  

The aim was the validation of a platform for internal dosimetry, named MCID, based on patient-specific images and direct Monte Carlo (MC) simulations, for radioembolization of liver tumors with 90Y-labeled microspheres. CT of real patients were used to create voxelized phantoms with different density and activity maps. SPECT acquisitions were simulated by the SIMIND MC code. Input macros for the GATE/Geant4 code were generated by MCID, loading coregistered morphological and functional images and performing image segmentation. The dosimetric results obtained from the direct MC simulations and from conventional MIRD approach at both organ and voxel level, in condition of homogeneous tissues, were compared, obtaining differences of about 0.3% and within 3%, respectively, whereas differences increased (up to 14%) introducing tissue heterogeneities in phantoms. Mean absorbed dose for spherical regions of different sizes (10 mm ≤ r ≤ 30 mm) from MC code and from OLINDA/EXM were also compared obtaining differences varying in the range 7–69%, which decreased to 2–9% after correcting for partial volume effects (PVEs) from imaging, confirming that differences were mostly due to PVEs, even though a still high difference for the smallest sphere suggested possible source description mismatching. This study validated the MCID platform, which allows the fast implementation of a patient-specific GATE simulation, avoiding complex and time-consuming manual coding. It also points out the relevance of personalized dosimetry, accounting for inhomogeneities, in order to avoid absorbed dose misestimations.

2020 ◽  
Vol 59 (05) ◽  
pp. 365-374
Author(s):  
Theresa Ida Götz ◽  
Elmar Wolfgang Lang ◽  
Olaf Prante ◽  
Michael Cordes ◽  
Torsten Kuwert ◽  
...  

Abstract Objective Patients with advanced prostate cancer are suitable candidates for [177Lu]PSMA-617 therapy. Integrated SPECT/CT systems have the potential to improve the accuracy of patient-specific tumor dosimetry. We present a novel patient-specific Monte Carlo based voxel-wise dosimetry approach to determine organ and total tumor doses (TTD). Methods 13 patients with histologically confirmed metastasized castration-resistant prostate cancer were treated with a total of 18 cycles of [177Lu]PSMA-617 therapy. In each patient, dosimetry was performed after the first cycle of [177Lu]PSMA-617 therapy. Regions of interest were defined manually on the SPECT/CT images for the kidneys, spleen and all 295 PSMA-positive tumor lesions in the field of view. The absorbed dose to normal organs and to all tumor lesions were calculated by a three dimensional dosimetry method based on Monte Carlo Simulations. Results The average dose values yielded the following results: 2.59 ± 0.63 Gy (1.67–3.92 Gy) for the kidneys, 0.79 ± 0.46 Gy (0.31–1.90 Gy) for the spleen and 11.00 ± 11.97 Gy (1.28–49.10 Gy) for all tracer-positive tumor lesions. A trend towards higher TTD was observed in patients with Gleason Scores > 8 compared to Gleason Scores ≤ 8 and in lymph node metastases compared to bone metastases. A significant correlation was determined between the serum-PSA level before RLT and the TTD (r = –0.57, p < 0.05), as well as between the TTD with the percentage change of serum-PSA levels before and after therapy was observed (r = –0.57, p < 0.05). Patients with higher total tumor volumes of PSMA-positive lesions demonstrated significantly lower kidney average dose values (r = –0.58, p < 0.05). Conclusion The presented novel Monte Carlo based voxel-wise dosimetry calculates a patient specific whole-body dose distribution, thus taking into account individual anatomies and tissue compositions showing promising results for the estimation of radiation doses of normal organs and PSMA-positive tumor lesions.


2017 ◽  
Vol 25 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Kamal Hadad ◽  
Mahdi Saeedi-Moghadam ◽  
Banafsheh Zeinali-Rafsanjani

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Verónica Morán ◽  
Elena Prieto ◽  
Lidia Sancho ◽  
Macarena Rodríguez-Fraile ◽  
Leticia Soria ◽  
...  

Abstract Background Prior radioembolization, a simulation using 99mTc-macroaggregated albumin as 90Y-microspheres surrogate is performed. Gamma scintigraphy images (planar, SPECT, or SPECT-CT) are acquired to evaluate intrahepatic 90Y-microspheres distribution and detect possible extrahepatic and lung shunting. These images may be used for pre-treatment dosimetry evaluation to calculate the 90Y activity that would get an optimal tumor response while sparing healthy tissues. Several dosimetry methods are available, but there is still no consensus on the best methodology to calculate absorbed doses. The goal of this study was to retrospectively evaluate the impact of using different dosimetry approaches on the resulting 90Y-radioembolization pre-treatment absorbed dose evaluation based on 99mTc-MAA images. Methods Absorbed doses within volumes of interest resulting from partition model (PM) and 3D voxel dosimetry methods (3D-VDM) (dose-point kernel convolution and local deposition method) were evaluated. Additionally, a new “Multi-tumor Partition Model” (MTPM) was developed. The differences among dosimetry approaches were evaluated in terms of mean absorbed dose and dose volume histograms within the volumes of interest. Results Differences in mean absorbed dose among dosimetry methods are higher in tumor volumes than in non-tumoral ones. The differences between MTPM and both 3D-VDM were substantially lower than those observed between PM and any 3D-VDM. A poor correlation and concordance were found between PM and the other studied dosimetry approaches. DVH obtained from either 3D-VDM are pretty similar in both healthy liver and individual tumors. Although no relevant global differences, in terms of absorbed dose in Gy, between both 3D-VDM were found, important voxel-by-voxel differences have been observed. Conclusions Significant differences among the studied dosimetry approaches for 90Y-radioembolization treatments exist. Differences do not yield a substantial impact in treatment planning for healthy tissue but they do for tumoral liver. An individual segmentation and evaluation of the tumors is essential. In patients with multiple tumors, the application of PM is not optimal and the 3D-VDM or the new MTPM are suggested instead. If a 3D-VDM method is not available, MTPM is the best option. Furthermore, both 3D-VDM approaches may be indistinctly used.


2016 ◽  
Vol 15 (2) ◽  
pp. 114 ◽  
Author(s):  
RuhollahGhahraman Asl ◽  
Mehdi Momennezhad ◽  
Shahrokh Nasseri ◽  
SeyedRasoul Zakavi ◽  
AliAsghar Parach ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Arthur Bongrand ◽  
Charbel Koumeir ◽  
Daphnée Villoing ◽  
Arnaud Guertin ◽  
Ferid Haddad ◽  
...  

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose–response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose–response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Su Bin Kim ◽  
In Ho Song ◽  
Yoo Sung Song ◽  
Byung Chul Lee ◽  
Arun Gupta ◽  
...  

Abstract[68Ga]PSMA-11 is a prostate-specific membrane antigen (PSMA)-targeting radiopharmaceutical for diagnostic PET imaging. Its application can be extended to targeted radionuclide therapy (TRT). In this study, we characterize the biodistribution and pharmacokinetics of [68Ga]PSMA-11 in PSMA-positive and negative (22Rv1 and PC3, respectively) tumor-bearing mice and subsequently estimated its internal radiation dosimetry via voxel-level dosimetry using a dedicated Monte Carlo simulation to evaluate the absorbed dose in the tumor directly. Consequently, this approach overcomes the drawbacks of the conventional organ-level (or phantom-based) method. The kidneys and urinary bladder both showed substantial accumulation of [68Ga]PSMA-11 without exhibiting a washout phase during the study. For the tumor, a peak concentration of 4.5 ± 0.7 %ID/g occurred 90 min after [68Ga]PSMA-11 injection. The voxel- and organ-level methods both determined that the highest absorbed dose occurred in the kidneys (0.209 ± 0.005 Gy/MBq and 0.492 ± 0.059 Gy/MBq, respectively). Using voxel-level dosimetry, the absorbed dose in the tumor was estimated as 0.024 ± 0.003 Gy/MBq. The biodistribution and pharmacokinetics of [68Ga]PSMA-11 in various organs of subcutaneous prostate cancer xenograft model mice were consistent with reported data for prostate cancer patients. Therefore, our data supports the use of voxel-level dosimetry in TRT to deliver personalized dosimetry considering patient-specific heterogeneous tissue compositions and activity distributions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bünyamin Aygün ◽  
Erdem Şakar ◽  
Abdulhalik Karabulut ◽  
Bünyamin Alım ◽  
Mohammed I. Sayyed ◽  
...  

AbstractIn this study, the fast neutron and gamma-ray absorption capacities of the new glasses have been investigated, which are obtained by doping CoO,CdWO4,Bi2O3, Cr2O3, ZnO, LiF,B2O3 and PbO compounds to SiO2 based glasses. GEANT4 and FLUKA Monte Carlo simulation codes have been used in the planning of the samples. The glasses were produced using a well-known melt-quenching technique. The effective neutron removal cross-sections, mean free paths, half-value layer, and transmission numbers of the fabricated glasses have been calculated through both GEANT4 and FLUKA Monte Carlo simulation codes. Experimental neutron absorbed dose measurements have been carried out. It was found that GS4 glass has the best neutron protection capacity among the produced glasses. In addition to neutron shielding properties, the gamma-ray attenuation capacities, were calculated using newly developed Phy-X/PSD software. The gamma-ray shielding properties of GS1 and GS2 are found to be equivalent to Pb-based glass.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Benjamin J. Van ◽  
Yuni K. Dewaraja ◽  
Mamadou L. Sangogo ◽  
Justin K. Mikell

Abstract Introduction Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. Methods Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80–150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. Results Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80–150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. Conclusion Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods.


2020 ◽  
Vol 152 ◽  
pp. S1038-S1039
Author(s):  
J.F. Calvo Ortega ◽  
M. Hermida-López- ◽  
S. Moragues-Femenía ◽  
C. Laosa-Bello ◽  
J. Casals-Farran
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document