scholarly journals Data Augmentation Using Generative Adversarial Network for Automatic Machine Fault Detection Based on Vibration Signals

2021 ◽  
Vol 11 (5) ◽  
pp. 2166
Author(s):  
Van Bui ◽  
Tung Lam Pham ◽  
Huy Nguyen ◽  
Yeong Min Jang

In the last decade, predictive maintenance has attracted a lot of attention in industrial factories because of its wide use of the Internet of Things and artificial intelligence algorithms for data management. However, in the early phases where the abnormal and faulty machines rarely appeared in factories, there were limited sets of machine fault samples. With limited fault samples, it is difficult to perform a training process for fault classification due to the imbalance of input data. Therefore, data augmentation was required to increase the accuracy of the learning model. However, there were limited methods to generate and evaluate the data applied for data analysis. In this paper, we introduce a method of using the generative adversarial network as the fault signal augmentation method to enrich the dataset. The enhanced data set could increase the accuracy of the machine fault detection model in the training process. We also performed fault detection using a variety of preprocessing approaches and classified the models to evaluate the similarities between the generated data and authentic data. The generated fault data has high similarity with the original data and it significantly improves the accuracy of the model. The accuracy of fault machine detection reaches 99.41% with 20% original fault machine data set and 93.1% with 0% original fault machine data set (only use generate data only). Based on this, we concluded that the generated data could be used to mix with original data and improve the model performance.

2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4291
Author(s):  
Xuejiao Gong ◽  
Bo Tang ◽  
Ruijin Zhu ◽  
Wenlong Liao ◽  
Like Song

Due to the strong concealment of electricity theft and the limitation of inspection resources, the number of power theft samples mastered by the power department is insufficient, which limits the accuracy of power theft detection. Therefore, a data augmentation method for electricity theft detection based on the conditional variational auto-encoder (CVAE) is proposed. Firstly, the stealing power curves are mapped into low dimensional latent variables by using the encoder composed of convolutional layers, and the new stealing power curves are reconstructed by the decoder composed of deconvolutional layers. Then, five typical attack models are proposed, and the convolutional neural network is constructed as a classifier according to the data characteristics of stealing power curves. Finally, the effectiveness and adaptability of the proposed method is verified by a smart meters’ data set from London. The simulation results show that the CVAE can take into account the shapes and distribution characteristics of samples at the same time, and the generated stealing power curves have the best effect on the performance improvement of the classifier than the traditional augmentation methods such as the random oversampling method, synthetic minority over-sampling technique, and conditional generative adversarial network. Moreover, it is suitable for different classifiers.


2020 ◽  
Vol 12 (22) ◽  
pp. 3715 ◽  
Author(s):  
Minsoo Park ◽  
Dai Quoc Tran ◽  
Daekyo Jung ◽  
Seunghee Park

To minimize the damage caused by wildfires, a deep learning-based wildfire-detection technology that extracts features and patterns from surveillance camera images was developed. However, many studies related to wildfire-image classification based on deep learning have highlighted the problem of data imbalance between wildfire-image data and forest-image data. This data imbalance causes model performance degradation. In this study, wildfire images were generated using a cycle-consistent generative adversarial network (CycleGAN) to eliminate data imbalances. In addition, a densely-connected-convolutional-networks-based (DenseNet-based) framework was proposed and its performance was compared with pre-trained models. While training with a train set containing an image generated by a GAN in the proposed DenseNet-based model, the best performance result value was realized among the models with an accuracy of 98.27% and an F1 score of 98.16, obtained using the test dataset. Finally, this trained model was applied to high-quality drone images of wildfires. The experimental results showed that the proposed framework demonstrated high wildfire-detection accuracy.


2019 ◽  
Vol 11 (23) ◽  
pp. 6699
Author(s):  
Suyang Zhou ◽  
Zijian Hu ◽  
Zhi Zhong ◽  
Di He ◽  
Meng Jiang

The convergence of energy security and environmental protection has given birth to the development of integrated energy systems (IES). However, the different physical characteristics and complex coupling of different energy sources have deeply troubled researchers. With the rapid development of AI and big data, some attempts to apply data-driven methods to IES have been made. Data-driven technologies aim to abandon complex IES modeling, instead mining the mapping relationships between different parameters based on massive volumes of operating data. However, integrated energy system construction is still in the initial stage of development and operational data are difficult to obtain, or the operational scenarios contained in the data are not enough to support data-driven technologies. In this paper, we first propose an IES operating scenario generator, based on a Generative Adversarial Network (GAN), to produce high quality IES operational data, including energy price, load, and generator output. We estimate the quality of the generated data, in both visual and quantitative aspects. Secondly, we propose a control strategy based on the Q-learning algorithm for a renewable energy and storage system with high uncertainty. The agent can accurately map between the control strategy and the operating states. Furthermore, we use the original data set and the expanded data set to train an agent; the latter works better, confirming that the generated data complements the original data set and enriches the running scenarios.


Author(s):  
Wen-Yu Yang ◽  
Ke-Fei Wu ◽  
A-Li Luo ◽  
Zhi-Qiang Zou

It is an ongoing issue in astronomy to recognize and classify O-type spectra comprehensively. The neural network is a popular recognition model based on data. The number of O-stars collected in LAMOST is <1% of AFGK stars, and there are only 127 O-type stars in the data release seven version. Therefore, there are not enough O-type samples available for recognition models. As a result, the existing neural network models are not effective in identifying such rare star spectra. This paper proposed a novel spectra recognition model (called LCGAN model) to solve this problem with data augmentation, which is based on Locally Connected Generative Adversarial Network (LCGAN). The LCGAN introduced the locally connected convolution and two timescale update rule to generate O-type stars' spectra. In addition, the LCGAN model adopted residual and attention mechanisms to recognize O-type spectra. To evaluate the performance of proposed models, we conducted a comparative experiment using a stellar spectral data set, which consists of more than 40,000 spectra, collected by the large sky area multi-object fiber spectroscopic telescope (LAMOST). The experimental results showed that the LCGAN model could generate meaningful O-type spectra. In our validation data set, the recognition accuracy of the data enhanced recognition model can reach 93.67%, 8.66% higher than that of the non-data enhanced identification model, which lays a good foundation for further analysis of astronomical spectra.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 256
Author(s):  
Thierry Pécot ◽  
Alexander Alekseyenko ◽  
Kristin Wallace

Deep learning has revolutionized the automatic processing of images. While deep convolutional neural networks have demonstrated astonishing segmentation results for many biological objects acquired with microscopy, this technology's good performance relies on large training datasets. In this paper, we present a strategy to minimize the amount of time spent in manually annotating images for segmentation. It involves using an efficient and open source annotation tool, the artificial increase of the training data set with data augmentation, the creation of an artificial data set with a conditional generative adversarial network and the combination of semantic and instance segmentations. We evaluate the impact of each of these approaches for the segmentation of nuclei in 2D widefield images of human precancerous polyp biopsies in order to define an optimal strategy.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ying Fu ◽  
MinXue Gong ◽  
Guang Yang ◽  
JinRong Hu ◽  
Hong Wei ◽  
...  

The generative adversarial network (GAN) has advantage to fit data distribution, so it can achieve data augmentation by fitting the real distribution and synthesizing additional training data. In this way, the deep convolution model can also be well trained in the case of using a small sample medical image data set. However, some certain gaps still exist between synthetic images and real images. In order to further narrow those gaps, this paper proposed a method that applies SimGAN on cardiac magnetic resonance synthetic image optimization task. Meanwhile, the improved residual structure is used to deepen the network structure to improve the performance of the optimizer. Lastly, the experiments will show the good result of our data augmentation method based on GAN.


Author(s):  
Yongqing Wang ◽  
Mengmeng Niu ◽  
Kuo Liu ◽  
Honghui Wang ◽  
Mingrui Shen ◽  
...  

Abstract In the process of parts processing, due to the real working conditions and data acquisition equipment, the collected working data of tools are actually limited. Meanwhile, the tool usually works in the normal state, so it is prone to cause the problem of unbalanced data set, which restricts the accuracy of tool condition monitoring. Aiming at this problem, this paper proposes a tool condition monitoring method based on generative adversarial network (GAN) for data augmentation. Specifically, first collect original samples data during processing in different tool conditions, then the collected sample data is input into GAN, and the generator of GAN can generate new samples which has similar distribution with original samples from tool condition signals data, finally the real samples and generated samples are combined to train deep learning network to predict tool conditions. Experimental results show that the proposed method can significantly improve the accuracy of tool condition monitoring. This paper compares and visualizes the impact of the training data set on the classification ability of the deep learning network model. In addition, some traditional methods are used for comparison, and F1 measure is introduced to evaluate the quality of the results. The results show that this method is better than the Adaptive Synthetic Sampling (Adasyn), add-noise, and resampling.


2021 ◽  
Vol 14 (7) ◽  
pp. 1202-1214
Author(s):  
Tongyu Liu ◽  
Ju Fan ◽  
Yinqing Luo ◽  
Nan Tang ◽  
Guoliang Li ◽  
...  

Real-world data is dirty, which causes serious problems in (supervised) machine learning (ML). The widely used practice in such scenario is to first repair the labeled source (a.k.a. train) data using rule-, statistical- or ML-based methods and then use the "repaired" source to train an ML model. During production, unlabeled target (a.k.a. test) data will also be repaired, and is then fed in the trained ML model for prediction. However, this process often causes a performance degradation when the source and target datasets are dirty with different noise patterns , which is common in practice. In this paper, we propose an adaptive data augmentation approach, for handling missing data in supervised ML. The approach extracts noise patterns from target data, and adapts the source data with the extracted target noise patterns while still preserving supervision signals in the source. Then, it patches the ML model by retraining it on the adapted data, in order to better serve the target. To effectively support adaptive data augmentation, we propose a novel generative adversarial network (GAN) based framework, called DAGAN, which works in an unsupervised fashion. DAGAN consists of two connected GAN networks. The first GAN learns the noise pattern from the target, for target mask generation. The second GAN uses the learned target mask to augment the source data, for source data adaptation. The augmented source data is used to retrain the ML model. Extensive experiments show that our method significantly improves the ML model performance and is more robust than the state-of-the-art missing data imputation solutions for handling datasets with different missing value patterns.


Sign in / Sign up

Export Citation Format

Share Document