scholarly journals Yttrium Oxide Nanoparticle Synthesis: An Overview of Methods of Preparation and Biomedical Applications

2021 ◽  
Vol 11 (5) ◽  
pp. 2172
Author(s):  
Govindasamy Rajakumar ◽  
Lebao Mao ◽  
Ting Bao ◽  
Wei Wen ◽  
Shengfu Wang ◽  
...  

Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide (Y2O3) nanoparticle is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. Y2O3 has also been used as a polarizer, phosphor, laser host material, and in the optoelectronic fields for cancer therapy, biosensor, and bioimaging. Yttrium oxide nanoparticles have attractive antibacterial and antioxidant properties. This review focuses on the promising applications of Y2O3, its drawbacks, and its modifications. The synthetic methods of nanoparticles, such as sol-gel, emulsion, chemical methods, solid-state reactions, combustion, colloid reaction techniques, and hydrothermal processing, are recapitulated. Herein, we also discuss the advantages and disadvantages of Y2O3 NPs based biosensors that function through various detection modes including colorimetric, electrochemistry, and chemo luminescent regarding the detection of small organic chemicals, metal ions, and biomarkers.

2018 ◽  
Vol 6 (8) ◽  
pp. 136-145
Author(s):  
Ayodeji Precious Ayanwale ◽  
Alejandro Donohué Cornejo ◽  
Juan Carlos Cuevas González ◽  
León Francisco Espinosa Cristóbal ◽  
Simón Yobanny Reyes López

There has been different synthetic route used for the synthesis of zirconia mixed metal oxide nanoparticles. The different synthetic methods coupled with other factors like concentration, PH, type of precursor used etc help to synthesize zirconia mixed metal oxide nanoparticles having different physicochemical properties. This paper discusses the different synthetic routes of sol-gel, hydrothermal and coprecipitation method for the formation of zirconia in combination with other metal oxide to form zirconia mixed metal oxide nanoparticles, the physicochemical properties of the synthesized zirconia mixed metal oxide nanoparticle, their characterization and application.


Author(s):  
Norhasnidawani Johari ◽  
Noor Azlina Hassan ◽  
Norita Hassan ◽  
Mohd Hanafi Ani

Nanocoatings plays an important role in coating industry. The solution was being prepared through copolymerization of epoxy resin hardener and with the incorporation of metal oxide nanoparticles, Zinc Oxide (ZnO) and Silica (SiO2). ZnO and SiO2 were synthesized using sol-gel. Epoxy hardener acted as host while the metal oxide nanoparticles as guest components. The formulation of nanocoatings with excellent adhesion strength and corrosion protection of carbon steel was studied. The performance of wetting ability with different medium was analysed using contact angle. Water medium showed the addition of 3wt% of hybrid between ZnO and SiO2 was the best nanocoating to form hydrophobic surface and was also the best nanocoating surface to form hydrophilic surface with vacuum oil dropping. In oil dropping, the contact angle was smaller than 90° and the water drop tends to spreads on surface.


2018 ◽  
Vol 54 (23) ◽  
pp. 2914-2917 ◽  
Author(s):  
Kerda Keevend ◽  
Guido Panzarasa ◽  
Fabian H. L. Starsich ◽  
Martin Zeltner ◽  
Anastasia Spyrogianni ◽  
...  

MeltPEGylation constitutes an elegant one-pot route for the efficient PEGylation of metal oxide nanoparticles with improved hemo- and cytocompatibility.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Markus Niederberger ◽  
Jelena Buha ◽  
Igor Djerdj

ABSTRACTSol-gel routes to metal oxide nanoparticles in organic solvents under exclusion of water represent a valuable alternative to aqueous methods. In comparison to the complex aqueous chemistry, nonaqueous processes offer the possibility to better understand and to control the reaction pathways on a molecular level, enabling the synthesis of nanomaterials with high crystallinity and well-defined and uniform particle morphologies. The manifold role of the organic species in providing the oxygen for the oxide formation and in controlling the crystal growth and the assembly properties makes it possible to tailor the morphological, structural and compositional characteristics of the final inorganic products.In addition to metal oxides with nearly spherical crystallite sizes in the range of just a few nanometers, also more complex morphologies such as nanowire bundles, nanorods or lamellar organic-inorganic hybrids of varying hierarchical complexity can be achieved in one step and without the use of any surfactants. The spherical nanocrystallites are on the one hand versatile building blocks for the fabrication of fully crystalline and ordered mesoporous materials and on the other hand suitable precursors for the synthesis of metal nitride nanoparticles.This proceeding provides an overview of the various oxidic nanoparticles synthesized via the nonaqueous and surfactant-free sol-gel approach, summarizes the most frequently found formation mechanisms, and offers some insight into the crystallization pathway of nanoparticles. Furthermore, the use of metal oxide nanoparticles as nanobuilding blocks for the preparation of nano- and mesostructures as well as their transformation into metal nitride nanocrystals will be discussed.


2004 ◽  
Vol 847 ◽  
Author(s):  
Guido Kickelbick ◽  
Dieter Holzinger

ABSTRACTTwo general microemulsion-based routes towards surface-functionalized metal oxide nanoparticles serving as macroinitiators in “grafting from” atom transfer radical polymerization (ATRP), are presented. Metal alkoxides modified with several β-diketone derivatives carrying potential ATRP-initiating sites served as precursors for the particle formation leading in an solgel process to in situ-functionalized titanium-, zirconium-, tantalum-, vanadium-, yttrium-, and iron oxide nanoparticles. The obtained systems were compared with metal oxide nanoparticles prepared by using metal salts as precursors which were functionalized in a second step with ATRP-initiator containing silane coupling agents. The obtained particles had diameters between 5 nm and 640 nm and served as multifunctional polymerization initiators in ATRP using styrene and methyl methacrylate as monomers.


2021 ◽  
Vol 06 ◽  
Author(s):  
Anjum Mobeen Syeda ◽  
Habeeb Khadri ◽  
Khateef Riazunnisa

Background: Biological synthesis via greener route attained eclectic interest for research investigators due to their reliable, sustainable, ecofriendly, and non-toxic nature since numerous efforts are made laterally with reflective applications by synthesizing diverse nanomaterials embraces, metals/metal oxide, hybrid, and bioinspired materials during past era. Objective: The present review reports and aimed to update and uncover all the minutiae regarding two medicinal plants sources allied with diversified metal and non-metal nanoparticle synthesis thru greener approach. Methods: The ornamental, medicinal plants such as Catharanthus roseus and Moringa oleifera have been broadly sightseen for the synthesis of varied nanoparticles due to existence of their innumerable phytochemical configuration which may act as bio-reducing and stabilizing agent by metallic/metal oxides, and non-metallic precursors such as silver, gold, sulphur, copper oxide, iron oxide, ruthenium oxide nanoparticles using either leaves infusions or part/whole plant. Conclusion: This report highlights with a phenomenon of using different parts of these two plants and their applications in varied scientific domains which may act as a promising drug candidates for drug delivery mechanism by means of nano approach.


Sign in / Sign up

Export Citation Format

Share Document