scholarly journals Equivalent Electrical Circuit Modeling of CNT-Based Transparent Electrodes

2021 ◽  
Vol 11 (8) ◽  
pp. 3408
Author(s):  
Monica La Mura ◽  
Patrizia Lamberti ◽  
Vincenzo Tucci

Among the various applications of carbon nanotubes (CNTs) that have been investigated since the discovery of their exceptional potential in the electronic field, great interest has been directed towards the creation of carbon-based materials capable of replacing Indium Tin Oxide (ITO) as a transparent electrode. Such transparent conductive films find application in touch panels, LCD screens, OLED displays, photovoltaic cells, and many others. This review presents a collection of techniques that have been proposed during the last decade for the modeling of carbon nanotube-based materials by means of equivalent electrical networks. These networks represent the electrical properties of CNT-based conductive thin films in a way that can be easily included in circuit simulators for the simulation-assisted design of the different devices under static and dynamic conditions.

2021 ◽  
Author(s):  
Yuxin Tang ◽  
Wanying Yin ◽  
Yue Huang ◽  
Ganghua Zhang ◽  
Qingbiao Zhao ◽  
...  

Silver nanowires (AgNWs) network has shown great promise as transparent conductive films (TCFs) due to its excellent optoelectronic performance. In order to replace indium tin oxide (ITO), considerable intricate methods...


2014 ◽  
Vol 18 (10n11) ◽  
pp. 982-990 ◽  
Author(s):  
Kei Ohkubo ◽  
Yuki Kawashima ◽  
Kentaro Mase ◽  
Hayato Sakai ◽  
Taku Hasobe ◽  
...  

An electron donor–acceptor supramolecular complex was formed between an anionic zinc chlorin carboxylate ( ZnCh -) and lithium-ion-encapsulated [60]fullerene ( Li +@ C 60) by an electrostatic interaction in benzonitrile ( PhCN ). Photoinduced electron transfer in the supramolecular complex of ZnCh -/ Li +@ C 60 resulted in the formation of the charge-separated state via electron transfer from the triplet excited state of ZnCh - to Li +@ C 60. We report herein photovoltaic cells using ZnCh -/ Li +@ C 60 nanoclusters, which are assembled on the optically transparent electrode (OTE) of nanostructured SnO 2 (OTE/ SnO 2). The photoelectrochemical behavior of the nanostructured SnO 2 film of supramolecular nanoclusters of ZnCh - and Li +@ C 60 denoted as OTE/ SnO 2/( ZnCh -/ Li +@ C 60)n is significantly higher than the single component films of ZnCh - or Li +@ C 60 clusters, denoted as OTE/ SnO 2/( ZnCh -)n or OTE/ SnO 2/( Li +@ C 60)n.


2011 ◽  
Vol 1288 ◽  
Author(s):  
Khayankhyarvaa Sarangerel ◽  
Altantsetseg Delgerjargal ◽  
Byambasuren Delgertsetseg ◽  
Chimed Ganzorig

ABSTRACTOrganic thin film photovoltaic (PV) cells have attracted attention because of their ease of fabrication and potential for low cost production. In this paper, we study the effects of chemical modification of indium-tin-oxide (ITO) on the performance of organic PV cells. The organic PV cells are fabricated, with the cell configuration of ITO/copper phthalocyanine (CuPc) (20 nm)/fullerene (C60) (40 nm)/Al with and without bathocuproine (BCP) (10 nm) between C60 and Al. By the use of para-substituted benzenesulfonyl chlorides with different terminal groups of H- and Cl-, the energy offset at the ITO/CuPc interface is tuned widely depending upon the interface dipoles and thus the correlation between the change in the ITO work function and the performance of the PV cells by chemical modification is examined.


2000 ◽  
Author(s):  
Ronald A. Morgan ◽  
K. W. Wang

Abstract It has been shown that piezoelectric materials can be used as passive electromechanical vibration absorbers when shunted by electrical networks. Semi-active piezoelectric absorbers have also been proposed for suppressing harmonic excitations with varying frequency. However, these semi-active devices have limitations that restrict their applications. The design presented here is a high performance active-passive alternative to semi-active absorbers that uses a combination of a passive electrical circuit and active control actions. The active control consists of three parts: an adaptive inductor tuning action, a negative resistance action, and a coupling enhancement action. A formulation for the optimal tuning of the piezoelectric absorber inductance on a multiple degree of freedom (MDOF) structure is derived. The effectiveness of the proposed system is demonstrated experimentally on a system under a variable frequency excitation. Extensive parameter studies are also carried out to show that the proposed design offers superior performance and efficiency compared to other state-of-the-art control methods.


Sign in / Sign up

Export Citation Format

Share Document