scholarly journals Mechanochemical Synthesis of the Catechol-Theophylline Cocrystal: Spectroscopic Characterization and Molecular Structure

2021 ◽  
Vol 11 (9) ◽  
pp. 3810
Author(s):  
Juan Saulo González-González ◽  
Raquel Jiménez-López ◽  
David Ortegón-Reyna ◽  
Gabino Gonzalez-Carrillo ◽  
Francisco Javier Martínez-Martínez

Pharmaceutical cocrystallization offers the possibility to modify the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients. The mechanochemical synthesis and spectroscopic characterization of the catechol-theophylline (CAT-TEO) cocrystal is reported. The cocrystal was prepared by the solvent-assisted grinding method. The ATR-IR spectroscopy study allowed to determine the formation of the cocrystal because the O-H and C=O stretching bands in the CAT-TEO cocrystal were shifted with respect to the starting materials, suggesting the formation of the C=O···H-O hydrogen bond interaction. Infrared spectroscopy also allowed to discard hydration of the cocrystal, and polymorphic transitions of the starting products as a consequence of the mechanochemical grinding. The X-ray powder diffraction and thermal studies confirmed the formation of a new solid phase. In the solid state 13C NMR spectra of the cocrystal, the signals were shifted with respect to the starting products. The 13C NMR chemical shifts of the CAT-TEO cocrystal were simulated by using the gauge including the atomic orbital (GIAO) method. These results showed a good correlation between the experimental and calculated 13C NMR results. Theoretical calculations and natural bonding orbital analysis (NBO) at a B3LYP/6-31G(d,p) level of theory were performed to obtain structural information of the cocrystal.

2018 ◽  
Author(s):  
Mihails Arhangelskis ◽  
Athanassis Katsenis ◽  
Novendra Novendra ◽  
Zamirbek Akimbekov ◽  
Dayaker Gandrath ◽  
...  

By combining mechanochemical synthesis and calorimetry with theoretical calculations, we demonstrate that dispersion-corrected periodic density functional theory (DFT) can accurately survey the topological landscape and predict relative energies of polymorphs for a previously inaccessible fluorine-substituted zeolitic imidazolate framework (ZIF). Experimental screening confirmed two out of three theoretically anticipated polymorphs, and the calorimetric measurements provided an excellent match to theoretically calculated energetic difference between them.<br>


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6779
Author(s):  
Krzysztof B. Beć ◽  
Justyna Grabska ◽  
Christian W. Huck ◽  
Sylwester Mazurek ◽  
Mirosław A. Czarnecki

Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K3) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600–2600 cm−1. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000–3600 and 2800–1800 cm−1 ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.


2019 ◽  
Vol 10 (2) ◽  
pp. 95-101
Author(s):  
Sebile Işık Büyükekşi ◽  
Namık Özdemir ◽  
Abdurrahman Şengül

A versatile synthetic building block, 2-amino-1,10-phenanthrolin-1-ium chloride (L∙HCl) was synthesized and characterized by IR, 1H and 13C NMR DEPT analysis, UV/Vis and single-crystal X-ray diffraction technique. The molecular geometry, vibrational wavenumbers and gauge including atomic orbital (GIAO), 1H and 13C NMR chemical shifts values of the title compound in the ground state were obtained by using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and compared with the experimental data. Electronic absorption spectrum of the salt was determined using the time-dependent density functional theory (TD-DFT) method at the same level. In the NMR and electronic absorption spectra calculations, the effect of solvent on the theoretical parameters was included using the default model with DMSO as solvent. The obtained theoretical parameters agree well with the experimental findings.


The Analyst ◽  
2018 ◽  
Vol 143 (4) ◽  
pp. 883-890 ◽  
Author(s):  
Shihua Yu ◽  
Zhigang Liu ◽  
Hongwei Li ◽  
Jianpo Zhang ◽  
Xin-xin Yuan ◽  
...  

Surface enhanced Raman scattering (SERS) is an ultra-sensitive spectroscopy technique, which can provide rich structural information for a great number of molecules, while solid phase micro-extraction (SPME) is an efficient method for sample pretreatment in analytical chemistry, particularly in a micro-system.


1994 ◽  
Vol 47 (1) ◽  
pp. 131 ◽  
Author(s):  
JB Peel ◽  
RG Rothwell

The isolation and spectroscopic characterization of halogenated fullerene-60 compounds has not advanced greatly during the 2 years of effort in this area. While the fully fluorinated C60F60 has been studied in some detail, other halogen addition processes have indicated chlorination up to C60Cl24 and bromination up to C60Br24. However, definitive structural information has to date only been provided for three compounds, namely C60Br6, C60Br6 and C60Br24. Iodine does not appear to form genuine addition compounds. In the work reported here semiempirical calculations using the AM1 approximation with the MOPAC molecular orbital program have been directed to comparing the possible stable isomers of the 1:1 addition compounds C60X2 for X = F, Cl and Br. The favoured isomers can be described as 1,2-additions (to a double bond at a hexagon-hexagon fusion) and 1,4-additions (to the terminal carbons of a butadiene moiety) with higher-energy isomers resulting from 1,6- and 1,8-additions. The other isomers represented by 1,3- 1,5- and 1,7-additions are only stable relative to dissociation in the case of the fluorine addition compounds. By contrast for Br2 addition only the 1,2- and 1,4-isomers are stable toward dissociation. The calculations show that, at and near the addition site carbons, X2 addition is adequately described in terms of local distortion of the C60 sphere. The elementary model of C60 as comprising formal single and double bonds is relevant since C60 behaves as a 'poly- alkene ', with sp3 carbons replacing sp2 carbons at the addition sites. This model offers an explanation for the unique structures observed for C60Br6 and C60Br24 which the AM1calculations show to be very stable toward dissociation. However, the experimental C60Br8 structure is found to be relatively less stable than another isomer. Also high-stability isomers of C60Br4, C60Br10, C60Br12 and C60Br18 are predicted.


Sign in / Sign up

Export Citation Format

Share Document