scholarly journals Review of Propulsion System Design Strategies for Unmanned Aerial Vehicles

2021 ◽  
Vol 11 (11) ◽  
pp. 5209
Author(s):  
Cinzia Amici ◽  
Federico Ceresoli ◽  
Marco Pasetti ◽  
Matteo Saponi ◽  
Monica Tiboni ◽  
...  

The design of the propulsion system for Unmanned Aerial Vehicles (UAVs) demands an inclusive multidisciplinary approach from the earliest design phases, since every design choice strictly affects and is affected by the overall working conditions. This paper presents a review of the scientific literature focused on the design methods applied in defining and sizing the propulsion system of drones. The analysis, performed with a systematic approach, evaluated 123 papers according to two custom classification taxonomies, which investigated respectively the primary aim and specific content of the works. Finally, literature indications and hints were combined into an integrated framework for the functional design of the propulsion system of UAVs. The procedure aimed to support the designer in the preliminary selection of the propulsion candidates and the quick sizing of the supply system, during the first phases of the design process. According to the literature, design methods dramatically change depending on the expected applications and working conditions of UAVs, so that the detailed design of specific drone elements and propulsion components represents the focus of most of the papers in this field.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Hamurcu ◽  
Tamer Eren

The unmanned systems have been seeing a significant boom in the last ten years in different areas together with technological developments. One of the unmanned systems is unmanned aerial vehicles (UAVs). UAVs are used for reconnaissance and observation in the military areas and play critical role in attack and destroy missions. These vehicles have been winning more features together with developing technology in todays world. In addition, they have been varying with different features. A systematic and efficient approach for the selection of the UAV is necessary to choose a best alternative for the critical tasks under consideration. The multicriteria decision-making (MCDM) approaches that are analytic processes are well suited to deal intricacy in selection of alternative vehicles. This study also proposes an integrated methodology based on the analytic hierarch process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) to evaluate UAV alternatives for selection process. Firstly, AHP, a MCDM method, is used to determine the weights of each critical factor. Subsequently, it is utilized with the TOPSIS approach to rank the vehicle alternatives in the decision problem. Result of the study shows that UAV-1 was selected as the most suitable vehicle. In results, it is seen that the weights of the evaluation criteria found by using AHP affect the decision-making process. Finally, the validation and sensitivity analysis of the solution are made and discussed.


2020 ◽  
Vol 313 ◽  
pp. 00045 ◽  
Author(s):  
Jakub Hnidka ◽  
Dalibor Rozehnal ◽  
Karel Maňas

Small unmanned aerial vehicles (SUAVs) have found a widespread application in past decades. However, as the criticality of the missions for which they can be used increases, the demand for improvement of their efficiency increases as well. The paper focuses on a propeller driven SUAVs of a multirotor type, equipped with an electric motor, battery and propeller. The paper presents a simplified method of calculation of the SUAV maximal endurance, if the characteristics of all components of the propulsion system are known. To improve the overall efficiency of the propulsion system of an SUAV, the correct combination of all propulsion system components is critical. However, the largest impact on the maximal endurance is, arguably, caused by the propeller. The paper proposes a simple method of optimizing the propeller characteristics for hover and compares the proposed propeller design with conventional and commercially available propellers.


2009 ◽  
Vol 46 (6) ◽  
pp. 1945-1956 ◽  
Author(s):  
Thomas H. Bradley ◽  
Blake A. Moffitt ◽  
Thomas F. Fuller ◽  
Dimitri N. Mavris ◽  
David E. Parekh

Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 71
Author(s):  
Victor Gomez ◽  
Nicolas Gomez ◽  
Jorge Rodas ◽  
Enrique Paiva ◽  
Maarouf Saad ◽  
...  

Unmanned aerial vehicles (UAVs) are affordable these days. For that reason, there are currently examples of the use of UAVs in recreational, professional and research applications. Most of the commercial UAVs use Px4 for their operating system. Even though Px4 allows one to change the flight controller structure, the proportional-integral-derivative (PID) format is still by far the most popular choice. A selection of the PID controller parameters is required before the UAV can be used. Although there are guidelines for the design of PID parameters, they do not guarantee the stability of the UAV, which in many cases, leads to collisions involving the UAV during the calibration process. In this paper, an offline tuning procedure based on the multi-objective particle swarm optimization (MOPSO) algorithm for the attitude and altitude control of a Px4-based UAV is proposed. A Pareto dominance concept is used for the MOPSO to find values for the PID comparing parameters of step responses (overshoot, rise time and root-mean-square). Experimental results are provided to validate the proposed tuning procedure by using a quadrotor as a case study.


Sign in / Sign up

Export Citation Format

Share Document