Design Considerations, Optimization and Selection of Electrical System for Solar Electric High Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAVs) with Proposed ‘Approximated Iterative Method’, a Multidisciplinary Optimization Technique

Author(s):  
S Sairam ◽  
S Balakannan
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Hamurcu ◽  
Tamer Eren

The unmanned systems have been seeing a significant boom in the last ten years in different areas together with technological developments. One of the unmanned systems is unmanned aerial vehicles (UAVs). UAVs are used for reconnaissance and observation in the military areas and play critical role in attack and destroy missions. These vehicles have been winning more features together with developing technology in todays world. In addition, they have been varying with different features. A systematic and efficient approach for the selection of the UAV is necessary to choose a best alternative for the critical tasks under consideration. The multicriteria decision-making (MCDM) approaches that are analytic processes are well suited to deal intricacy in selection of alternative vehicles. This study also proposes an integrated methodology based on the analytic hierarch process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) to evaluate UAV alternatives for selection process. Firstly, AHP, a MCDM method, is used to determine the weights of each critical factor. Subsequently, it is utilized with the TOPSIS approach to rank the vehicle alternatives in the decision problem. Result of the study shows that UAV-1 was selected as the most suitable vehicle. In results, it is seen that the weights of the evaluation criteria found by using AHP affect the decision-making process. Finally, the validation and sensitivity analysis of the solution are made and discussed.


2018 ◽  
Vol 189 ◽  
pp. 10029
Author(s):  
Kenneth L. Witcher ◽  
Ian R. McAndrew ◽  
Elena Vishnevskaya

Unmanned Aerial Vehicles are used generally at low levels and speeds. The research reported in this article investigates the possible use of twin-wing designs for higher altitudes with a focus on the possible lift capable for either short runways or high payloads. The wing aerofoil and unique Angles of Attack, AoA, are set 5o on the upper wing and 10o on the lower. There is a positive upper wing stagger of 50% of the chord length at height separation of 1 chord. These parameters have been established from previous research and this research investigates how they generate lift at take-off and what lift and drag properties exist. It also determines if these parameters are in-line with those for high altitude flight.


2017 ◽  
Vol 30 (7) ◽  
pp. e4145 ◽  
Author(s):  
Angelos Amanatiadis ◽  
Loukas Bampis ◽  
Evangelos G. Karakasis ◽  
Antonios Gasteratos ◽  
Georgios Sirakoulis

2018 ◽  
pp. 53-57
Author(s):  
Otgonbayar Dandar ◽  
Atsushi Okamoto ◽  
Masaoki Uno ◽  
Undarmaa Batsaikhan ◽  
Burenjargal Ulziiburen ◽  
...  

Unmanned aerial vehicles (UAVs) or drones have revolutionized scientific research in multiple fields. Drones provide us multiple advantages over conventional geological mapping or high-altitude remote sensing methods, in which they allow us to acquire data more rapidly of inaccessible or risky outcrops, and can connect the spatial scale gap in mapping between manual field techniques and airborne, high-altitude remote sensing methods. Despite the decreased cost and technological developments of platforms, sensors and software, the use of drones for geological mapping in Mongolia has not yet been utilized. In this study, we present using of drone in two areas: the Chandman area in which eclogite is exposed and the Naran massif of the Khantaishir ophiolite in the Altai area. Drone yields images with high resolution that is reliable to use and reveals that it is possible to make better formulation of geological mapping. Our suggestion is that (1) Mongolian geoscientists are encouraged to add drones to their geologic toolboxes and (2) drone could open new advance of geological mapping in Mongolia in which geological map will be created in more effective and more detailed way combined with conventional geological survey on ground.


Author(s):  
ADAM MŁYNARCZYK ◽  
SŁAWOMIR KRÓLEWICZ ◽  
PAWEŁ RUTKOWSKI

The use of unmanned aerial vehicles is becoming more and more popular for making high-altitude and orthophotomap models. In this process, series of images are taken at specific intervals, usually lasting several seconds. This article demonstrates the ability to make models and orthophotomaps from dynamic images – video recorded from UAV. The best mutual coverage of photographs was indicated (95–96%) and the photogrammetric process for joining images was presented, through the creation of a point cloud to obtain a digital terrain model and the orotfotomap. The data was processed in 150 different variants and the usefulness of this method was demonstrated. Problems and errors that may occur during the processing of recorded image data are also described.


Sign in / Sign up

Export Citation Format

Share Document