scholarly journals Biovalorization of Lignocellulosic Materials for Xylitol Production by the Yeast Komagataella pastoris

2021 ◽  
Vol 11 (12) ◽  
pp. 5516
Author(s):  
Diana Araújo ◽  
Tatiana Costa ◽  
Filomena Freitas

The main goal of this study was to screen different lignocellulosic materials for their ability to support the cell growth of the yeast Komagataella pastoris and the production of xylitol. Several lignocellulosic materials, namely banana peels, brewer’s spent grains (BSGs), corncobs, grape pomace, grape stalks, and sawdust, were subjected to dilute acid hydrolysis to obtain sugar rich solutions that were tested as feedstocks for the cultivation of K. pastoris. Although the culture was able to grow in all the tested hydrolysates, a higher biomass concentration was obtained for banana peels (15.18 ± 0.33 g/L) and grape stalks (14.58 ± 0.19 g/L), while the highest xylitol production (1.51 ± 0.07 g/L) was reached for the BSG hydrolysate with a xylitol yield of 0.66 ± 0.39 g/g. Cell growth and xylitol production from BSG were improved by detoxifying the hydrolysate using activated charcoal, resulting in a fourfold increase of the biomass production, while xylitol production was improved to 3.97 ± 0.10 g/L. Moreover, concomitant with arabinose consumption, arabitol synthesis was noticed, reaching a maximum concentration of 0.82 ± 0.05 g/L with a yield on arabinose of 0.60 ± 0.11 g/g. These results demonstrate the feasibility of using lignocellulosic waste, especially BSG, as feedstock for the cultivation of K. pastoris and the coproduction of xylitol and arabitol. Additionally, it demonstrates the use of K. pastoris as a suitable microorganism to integrate a zero-waste biorefinery, transforming lignocellulosic waste into two high-value specialty chemicals with high market demand.

Author(s):  
Lorena L. de Medeiros ◽  
Flávio L. H. da Silva ◽  
Sharline F. M. Santos ◽  
Marta S. Madruga ◽  
Débora J. N. de Melo ◽  
...  

ABSTRACT The agro-industrial waste deposited in the environment causes problems in nature that can be solved with the use and generation of bioproducts. Thus, the objective was to study the lignocellulosic fraction of cashew (Anacardium occidentale L.) peduncle bagasse and fermentation on large scale (8-16 times) using the strain Candida guilliermondii CCT-3544 as production agent. According to the obtained results, it can be noted that the dry cashew peduncle bagasse has 21.45% of cellulose, 10.96% of hemicellulose and 35.39% of lignin. During fermentation, C. guilliermondii 3544-CAT was able to grow on medium containing hydrolysate, with maximum cell growth concentration of 3.5 g L-1. The behavior of the sugars in the fermentation process was similar in the different variables, with maximum production of ethanol and xylitol at 48 h of fermentation.


2017 ◽  
Vol 16 (41) ◽  
pp. 1997-2008
Author(s):  
Manjarres-Pinzon Katherine ◽  
Arias-Zabala Mario ◽  
Correa-Londono Guillermo ◽  
Rodriguez-Sandoval Eduardo

1998 ◽  
Vol 18 (1) ◽  
pp. 459-467 ◽  
Author(s):  
Elma R. Fernandes ◽  
Jun Yuan Zhang ◽  
Robert J. Rooney

ABSTRACT Adenovirus E1A proteins influence cell growth and phenotype through physical interactions with cellular proteins that regulate basic processes such as cell cycle progression, DNA synthesis, and differentiation. p120E4F is a low-abundance cellular transcription factor that represses the adenovirus E4 promoter and is regulated by E1A, through a phosphorylation-induced reduction of its DNA binding activity, to permit activation of the E4 promoter during early infection. To determine the normal biological role of p120E4F, we assessed its ability to influence fibroblast cell growth and transformation. p120E4F suppressed NIH 3T3 fibroblast colony formation but had little effect when coexpressed with E1A and/or activated ras. Cells that overexpressed p120E4F were inhibited in their ability to enter S phase, had elevated levels of the cdk inhibitor p21 WAF1 , and reduced cyclin D-cdk4/6 kinase activity. The increase of p21 WAF1 levels occurred through a p53-independent posttranscriptional mechanism that included a three- to fourfold increase in the half-life of p21 WAF1 protein. Coexpression of activatedras with p120E4F stimulated cyclin D1 expression, elevated cyclin D-cdk4/6 kinase activity, and accelerated cell growth. These data suggest an important role for p120E4F in normal cell division and demonstrate that p21 WAF1 can be regulated by protein turnover.


Author(s):  
Chizuru Sasaki ◽  
Akihiro Kurosumi ◽  
Yuya Yamashita ◽  
Godliving Mtui ◽  
Yoshitoshi Nakamura

2002 ◽  
Vol 98-100 (1-9) ◽  
pp. 449-458 ◽  
Author(s):  
Luis F. Figueiredo Faria ◽  
Maria Antonieta P. Gimenes ◽  
Ronaldo Nobrega ◽  
Nei Pereira, Jr.

Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 342
Author(s):  
Marica Troilo ◽  
Graziana Difonzo ◽  
Vito M. Paradiso ◽  
Carmine Summo ◽  
Francesco Caponio

The winemaking sector is one of the most productive worldwide, and thus it also generates large amounts of by-products with high environmental impacts. Furthermore, global market trends and government regulations promote industrial alternatives based on sustainable production processes. As a result, several studies have focused their attention on the reuse of grape by-products in the agro-food chain. Vine shoots, grape stalks, and wine lees, although produced to a lesser extent than grape pomace, have increasingly been receiving attention for their applications in the food sector, since they are a good source of functional and bioactive compounds. In this framework, our review highlights the promising results obtained by exploiting the antioxidant and/or antimicrobial activity of vine shoots, grape stalks, and wine lees or their extracts to replace the most common oenological additives and to assay the activity against food pathogens. Further, innovative functional foods and sustainable food packaging have been formulated by taking advantage of polyphenols and fiber, as well as plant bio-stimulants, in order to obtain grapes and wines with high quality characteristics. Overall, these by-products showed the potential to be recycled into the food chain as functional additives for different products and applications, supporting the sustainability of the winemaking sector.


Author(s):  
Luis F. Figueiredo Faria ◽  
Maria Antonieta P. Gimenes ◽  
Ronaldo Nobrega ◽  
Nei Pereira

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2992 ◽  
Author(s):  
Adriana Kovalcik ◽  
Stanislav Obruca ◽  
Michal Kalina ◽  
Michal Machovsky ◽  
Vojtech Enev ◽  
...  

Polyhydroxyalkanoates (PHAs) are hydrolyzable bio-polyesters. The possibility of utilizing lignocellulosic waste by-products and grape pomace as carbon sources for PHA biosynthesis was investigated. PHAs were biosynthesized by employing Cupriavidus necator grown on fructose (PHBV-1) or grape sugar extract (PHBV-2). Fifty grams of lyophilized grape sugar extract contained 19.2 g of glucose, 19.1 g of fructose, 2.7 g of pectin, 0.52 g of polyphenols, 0.51 g of flavonoids and 7.97 g of non-identified rest compounds. The grape sugar extract supported the higher production of biomass and modified the composition of PHBV-2. The biosynthesized PHAs served as matrices for the preparation of the scaffolds. The PHBV-2 scaffolds had about 44.2% lower crystallinity compared to the PHBV-1 scaffolds. The degree of crystallinity markedly influenced the mechanical behavior and enzymatic hydrolysis of the PHA scaffolds in the synthetic gastric juice and phosphate buffer saline solution with the lipase for 81 days. The higher proportion of amorphous moieties in PHBV-2 accelerated enzymatic hydrolysis. After 81-days of lasting enzymatic hydrolysis, the morphological changes of the PHBV-1 scaffolds were negligible compared to the visible destruction of the PHBV-2 scaffolds. These results indicated that the presence of pectin and phenolic moieties in PHBV may markedly change the semi-crystalline character of PHBV, as well as its mechanical properties and the course of abiotic or enzymatic hydrolysis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Siti Syazwani Mohd Shah ◽  
Abdullah Amru Indera Luthfi ◽  
Jamaliah Md Jahim ◽  
Shuhaida Harun ◽  
Kheng Oon Low

AbstractIn recent years, there has been a growing interest in the use of agricultural biomass for fermentation purposes; however, efficient strategies to counter lignocellulose inhibition are warranted to enhance xylitol production performance. Dilute-acid hydrolysis has been studied to selectively release a significant portion of xylose from hemicellulose, while leaving cellulose and lignin intact. The formation of inhibitory compounds, however, could jeopardise the overall performance during fermentation to produce xylitol. In this study, the fermentability of nitric acid-hydrolysed kenaf stem was substantially improved, through either adaptive evolution of the recombinant Escherichia coli BL21 (DE3) or removal of fermentation inhibitors by detoxification with activated carbon. Both methods were compared to evaluate the superiority in fermentative performance. In the fermentation with detoxified hemicellulosic hydrolysate, the non-adapted strain produced the highest xylitol concentration of up to 6.8 g/L, with 61.5% xylose consumption. The yields of xylitol production involving detoxification were successfully enhanced by 22.6% and by 35.7% compared to those involving adaptive evolution and raw hydrolysate, respectively. The results reported herein suggest that the utilization of detoxified kenaf stem hydrolysate could be advantageous.


Sign in / Sign up

Export Citation Format

Share Document