scholarly journals Levitation Stability and Hopf Bifurcation of EMS Maglev Trains

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Junxiong Hu ◽  
Weihua Ma ◽  
Xiaohao Chen ◽  
Shihui Luo

This paper analyzed the mechanical characteristics of single electromagnet system and elastic track beam of EMS maglev train and established a five-dimensional dynamics model of single electromagnet-track beam coupled system with classical PD control strategy adopted for its levitation system. Then, based on the Hurwitz criterion and the high-dimensional Hopf bifurcation theory, the stability of the coupled system is analyzed; the existence of the Hopf bifurcation is discussed and the bifurcation direction and the stability of the periodic solution are determined with levitation control feedback coefficient kp as the bifurcation parameter; and numerical simulation is conducted to verify the validity of the theoretical analysis results. The results show that the Hurwitz algebra criterion can directly determine the eigenvalues and symbols of the dynamics system to facilitate the analysis on the stability of the system and the Hopf bifurcation without the necessity of calculating the specific eigenvalues; supercritical Hopf bifurcation will occur under the given parameters, that is, when kp<kp0, the real-time system is asymptotically stable, yet Hopf bifurcation occurs as kp increases gradually beyond kp0, with the stability of the system lost and a stable limit cycle branched.

Author(s):  
Abdulghafoor Jasim Salim ◽  
Kais Ismail Ebrahem ◽  
Suhirman

Abstract: In this paper we study the stability of one of a non linear autoregressive model with trigonometric term  by using local linearization method proposed by Tuhro Ozaki .We find the singular point ,the stability of the singular point and the limit cycle. We conclude  that the proposed model under certain conditions have a non-zero singular point which is  a asymptotically salable ( when  0 ) and have an  orbitaly stable limit cycle . Also we give some examples in order to explain the method. Key Words : Non-linear Autoregressive model; Limit cycle; singular point; Stability.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050053
Author(s):  
Mainul Hossain ◽  
Nikhil Pal ◽  
Sudip Samanta ◽  
Joydev Chattopadhyay

In the present paper, we investigate the impact of fear in an intraguild predation model. We consider that the growth rate of intraguild prey (IG prey) is reduced due to the cost of fear of intraguild predator (IG predator), and the growth rate of basal prey is suppressed due to the cost of fear of both the IG prey and the IG predator. The basic mathematical results such as positively invariant space, boundedness of the solutions, persistence of the system have been investigated. We further analyze the existence and local stability of the biologically feasible equilibrium points, and also study the Hopf-bifurcation analysis of the system with respect to the fear parameter. The direction of Hopf-bifurcation and the stability properties of the periodic solutions have also been investigated. We observe that in the absence of fear, omnivory produces chaos in a three-species food chain system. However, fear can stabilize the chaos thus obtained. We also observe that the system shows bistability behavior between IG prey free equilibrium and IG predator free equilibrium, and bistability between IG prey free equilibrium and interior equilibrium. Furthermore, we observe that for a suitable set of parameter values, the system may exhibit multiple stable limit cycles. We perform extensive numerical simulations to explore the rich dynamics of a simple intraguild predation model with fear effect.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Mustapha Hamdi ◽  
Mohamed Belhaq

The effect of a high-frequency excitation on nontrivial solutions and bistability in a delayed Duffing oscillator with a delayed displacement feedback is investigated in this paper. We use the technique of direct partition of motion and the multiple scales method to obtain the slow dynamic of the system and its slow flow. The analysis of the slow flow provides approximations of the Hopf and secondary Hopf bifurcation curves. As a result, this study shows that increasing the delay gain, the system undergoes a secondary Hopf bifurcation. Further, it is indicated that as the frequency of the excitation is increased, the Hopf and secondary Hopf bifurcation curves overlap giving birth in the parameter space to small regions of bistability where a stable trivial steady state and a stable limit cycle coexist. Numerical simulations are carried out to validate the analytical finding.


2016 ◽  
Vol 28 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Lars O Bernhammer ◽  
Roeland De Breuker ◽  
Moti Karpel

A novel configuration of an energy harvester for local actuation and sensing devices using limit cycle oscillations has been modeled, designed and tested. A wing section has been designed with two trailing-edge free-floating flaps. A free-floating flap is a flap that can freely rotate around a hinge axis and is driven by trailing edge tabs. In the rotational axis of each flap a generator is mounted that converts the vibrational energy into electricity. It has been demonstrated numerically how a simple electronic system can be used to keep such a system at stable limit cycle oscillations by varying the resistance in the electric circuit. Additionally, it was shown that the stability of the system is coupled to the charge level of the battery, with increasing charge level leading to a less stable system. The system has been manufactured and tested in the Open Jet Wind Tunnel Facility of the Technical University Delft. The numerical results could be validated successfully and voltage generation could be demonstrated at cost of a decrease in lift of 2%.


2019 ◽  
Author(s):  
Christian Schoof

Abstract. Glacier lake outburst floods are common glacial hazards around the world. How big such floods can become (either in terms of peak discharge or in terms of total volume released) depends on how they are initiated: what causes the runaway enlargement of a subglacial or other conduit to start, and how big can the lake get before that point is reached? Here we investigate how the spontaneous channelization of a linked-cavity drainage system controls the onset of floods. In agreement with previous work, we show that floods only occur in a band of water throughput rates, and identify stabilizing mechanisms that allow steady drainage of an ice-dammed reservoir. We also show how stable limit cycle solutions emerge from the instability, a show how and why the stability properties of a drainage system with spatially spread-out water storage differ from those where storage is localized in a single reservoir or lake.


2020 ◽  
Vol 85 (3) ◽  
pp. 467-494
Author(s):  
Łukasz Płociniczak

Abstract We construct a dynamical system based on the Källén–Crafoord–Ghil conceptual climate model which includes the ice–albedo and precipitation–temperature feedbacks. Further, we classify the stability of various critical points of the system and identify a parameter which change generates a Hopf bifurcation. This gives rise to a stable limit cycle around a physically interesting critical point. Moreover, it follows from the general theory that the periodic orbit exhibits relaxation-oscillations that are a characteristic feature of the Pleistocene ice ages. We provide an asymptotic analysis of their behaviour and derive a formula for the period along with several estimates. They, in turn, are in a decent agreement with paleoclimatic data and are independent of any parametrization used. Whence, our simple but robust model shows that a climate may exhibit internal relaxation oscillations without any external forcing and for a wide range of parameters.


Author(s):  
A Amamou ◽  
M Chouchane

Floating ring bearings are used to support and guide rotors in several high-speed rotating machinery applications. They are usually credited for lower heat generation and higher vibration suppressing ability. Similar to conventional hydrodynamic bearings, floating ring bearings may exhibit unstable behaviour above a certain stability critical speed. Linear stability analysis is usually applied to predict the stability threshold speed. Non-linear stability analysis, however, is needed to predict the presence and the size of stable limit cycles above the stability threshold speed or unstable limit cycles below the stability critical speed. The prediction of limit cycles is an important step in bearing stability analysis. In this article, a non-linear dynamic model is derived and used to investigate the stability of a perfectly balanced symmetric rigid rotor supported by two identical floating ring bearings near the critical stability boundaries. The fluid film hydrodynamic reactions of the floating ring bearings are modelled by applying the short bearing theory and the half Sommerfeld solution. Hopf bifurcation theory is then utilized to determine the existence and the approximate size of stable and unstable limit cycles in the neighbourhood of the stability critical speed depending on the bearing design parameters. Numerical integration of the non-linear equations of motion is then carried out in order to compare the trajectories obtained by numerical integration to those obtained analytically using Hopf bifurcation analysis. Stability boundary curves for typical bearing design parameters have been decomposed into boundaries with supercritical stable limit cycles and boundaries with subcritical unstable limit cycles. The shape and size of the limit cycles for selected bearing parameters are presented using both analytical and numerical approaches. This article shows that floating ring stability boundaries may exhibit either stable supercritical limit cycles or unstable subcritical limit cycles predictable by Hopf bifurcation.


2017 ◽  
Vol 828 ◽  
pp. 680-707 ◽  
Author(s):  
Bryan Glaz ◽  
Igor Mezić ◽  
Maria Fonoberova ◽  
Sophie Loire

Fluid dynamics induced by periodically forced flow around a cylinder is analysed computationally for the case when the forcing frequency is much lower than the von Kármán vortex shedding frequency corresponding to the constant flow velocity condition. By using the Koopman mode decomposition approach, we find a new normal form equation that extends the classical Hopf bifurcation normal form by a time-dependent term for Reynolds numbers close to the Hopf bifurcation value. The normal form describes the dynamics of an observable and features a forcing (control) term that multiplies the state, and is thus a parametric – i.e. not an additive – forcing effect. We find that the dynamics of the flow in this regime is characterized by alternating instances of quiescent and strong oscillatory behaviour and that this pattern persists indefinitely. Furthermore, the spectrum of the associated Koopman operator is shown to possess quasi-periodic features. We establish the theoretical underpinnings of this phenomenon – that we name quasi-periodic intermittency – using the new normal form model and show that the dynamics is caused by the tendency of the flow to oscillate between the unstable fixed point and the stable limit cycle of the unforced flow. The quasi-periodic intermittency phenomenon is also characterized by positive finite-time Lyapunov exponents that, over a long period of time, asymptotically approach zero.


2016 ◽  
Vol 24 (6) ◽  
pp. 1162-1170 ◽  
Author(s):  
AR Hakimi ◽  
T Binazadeh

Inducing sustained oscillations in a class of nonlinear discrete time systems is studied in this paper. The novelty of this paper is based on the proposed approach in generating stable oscillations according to limit cycle control. The limit cycle control is not formulated for nonlinear discrete time systems of any order and this paper concentrates on this issue. Considering the stable limit cycle as a positive limit set for the dynamical system, a nonlinear control law is designed to create the considered limit cycle in the phase trajectories of the closed-loop nonlinear discrete time system to achieve oscillations with the desirable amplitude and frequency. For this purpose, firstly, the limit cycle control is proposed for second-order nonlinear discrete time systems. The stability analysis of the generated limit cycle is done via a suitable Lyapunov function. Also, the domain of attraction of the created limit cycle is calculated. The proposed method is then extended for nonlinear discrete time systems of any order via the backstepping technique. Finally, computer simulations are performed for a practical example to demonstrate the ability of the designed controller in generating stable oscillations.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Murtala Bello Aliyu ◽  
Mohd Hafiz Mohd

Multi-species and ecosystem models have provided ecologist with an excellent opportunity to study the effects of multiple biotic interactions in an ecological system. Predation and mutualism are among the most prevalent biotic interactions in the multi-species system. Several ecological studies exist, but they are based on one-or two-species interactions, and in real life, multiple interactions are natural characteristics of a multi-species community. Here, we use a system of partial differential equations to study the combined effects of predation, mutualism and dispersal on the multi-species coexistence and community stability in the ecological system. Our results show that predation provided a defensive mechanism against the negative consequences of the multiple species interactions by reducing the net effect of competition. Predation is critical in the stability and coexistence of the multi-species community. The combined effects of predation and dispersal enhance the multiple species coexistence and persistence. Dispersal exerts a positive effect on the system by supporting multiple species coexistence and stability of community structures. Dispersal process also reduces the adverse effects associated with multiple species interactions. Additionally, mutualism induces oscillatory behaviour on the system through Hopf bifurcation. The roles of mutualism also support multiple species coexistence mechanisms (for some threshold values) by increasing the stable coexistence and the stable limit cycle regions. We discover that the stability and coexistence mechanisms are controlled by the transcritical and Hopf bifurcation that occurs in this system. Most importantly, our results show the important influences of predation, mutualism and dispersal in the stability and coexistence of the multi-species communities


Sign in / Sign up

Export Citation Format

Share Document