scholarly journals Nonlinear Analysis of Electrocardiography Signals for Atrial Fibrillation

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Necmettin Sezgin

This paper aims to analyze the electrocardiography (ECG) signals for patient with atrial fibrillation (AF) by using bispectrum and extreme learning machine (ELM). AF is the most common irregular heart beat disease which may cause many cardiac diseases as well. Bispectral analysis was used to extract the nonlinear information in the ECG signals. The bispectral features of each ECG episode were determined and fed to the ELM classifier. The classification accuracy of ELM to distinguish nonterminating, terminating AF, and terminating immediately AF was 96.25%. In this study, the normal ECG signal was also compared with AF ECG signal due to the nonlinearity which was determined by bispectrum. The classification result of ELM was 99.15% to distinguish AF ECGs from normal ECGs.

2020 ◽  
pp. 1-13
Author(s):  
Eman Maghawry ◽  
Rasha Ismail ◽  
Tarek F. Gharib

Paroxysmal Atrial Fibrillation (PAF) is a special class of Atrial Fibrillation. Predicting PAF events from electrocardiogram (ECG) signal streams plays a vital role in generating real-time alerts for cardiac disorders. These alerts are extremely important to cardiologists in taking precautions to prevent their patients from having a stroke. In this study, an effective predictive approach to PAF events using the Extreme Learning Machine classification technique is proposed. Besides, we propose a feature extraction method that integrates new ECG signal features to its time-domain ones. The new features are based on the construction of sparse vectors for peaks in ECG signals that provide high overlap between similar ECGs. The proposed prediction approach with the new ECG features representation were evaluated on a real PAF dataset using the five-fold cross-validation method. Experiments show promising results for predicting PAF in terms of accuracy and execution time compared to other existing studies. The proposed approach achieved classification accuracy of 97% for non-streaming ECG signals mode and 94.4% for streaming mode.


2021 ◽  
Vol 11 (13) ◽  
pp. 5908
Author(s):  
Raquel Cervigón ◽  
Brian McGinley ◽  
Darren Craven ◽  
Martin Glavin ◽  
Edward Jones

Although Atrial Fibrillation (AF) is the most frequent cause of cardioembolic stroke, the arrhythmia remains underdiagnosed, as it is often asymptomatic or intermittent. Automated detection of AF in ECG signals is important for patients with implantable cardiac devices, pacemakers or Holter systems. Such resource-constrained systems often operate by transmitting signals to a central server where diagnostic decisions are made. In this context, ECG signal compression is being increasingly investigated and employed to increase battery life, and hence the storage and transmission efficiency of these devices. At the same time, the diagnostic accuracy of AF detection must be preserved. This paper investigates the effects of ECG signal compression on an entropy-based AF detection algorithm that monitors R-R interval regularity. The compression and AF detection algorithms were applied to signals from the MIT-BIH AF database. The accuracy of AF detection on reconstructed signals is evaluated under varying degrees of compression using the state-of-the-art Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm. Results demonstrate that compression ratios (CR) of up to 90 can be obtained while maintaining a detection accuracy, expressed in terms of the area under the receiver operating characteristic curve, of at least 0.9. This highlights the potential for significant energy savings on devices that transmit/store ECG signals for AF detection applications, while preserving the diagnostic integrity of the signals, and hence the detection performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yunlong Yu ◽  
Fuxian Liu

One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.


Author(s):  
Mohand Lokman Ahmad Al-dabag ◽  
Haider Th. Salim ALRikabi ◽  
Raid Rafi Omar Al-Nima

One of the common types of arrhythmia is Atrial Fibrillation (AF), it may cause death to patients. Correct diagnosing of heart problem through examining the Electrocardiogram (ECG) signal will lead to prescribe the right treatment for a patient. This study proposes a system that distinguishes between the normal and AF ECG signals. First, this work provides a novel algorithm for segmenting the ECG signal for extracting a single heartbeat. The algorithm utilizes low computational cost techniques to segment the ECG signal. Then, useful pre-processing and feature extraction methods are suggested. Two classifiers, Support Vector Machine (SVM) and Multilayer Perceptron (MLP), are separately used to evaluate the two proposed algorithms. The performance of the last proposed method with the two classifiers (SVM and MLP) show an improvement of about (19% and 17%, respectively) after using the proposed segmentation method so it became 96.2% and 97.5%, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hongpo Zhang ◽  
Renke He ◽  
Honghua Dai ◽  
Mingliang Xu ◽  
Zongmin Wang

Atrial fibrillation is the most common arrhythmia and is associated with high morbidity and mortality from stroke, heart failure, myocardial infarction, and cerebral thrombosis. Effective and rapid detection of atrial fibrillation is critical to reducing morbidity and mortality in patients. Screening atrial fibrillation quickly and efficiently remains a challenging task. In this paper, we propose SS-SWT and SI-CNN: an atrial fibrillation detection framework for the time-frequency ECG signal. First, specific-scale stationary wavelet transform (SS-SWT) is used to decompose a 5-s ECG signal into 8 scales. We select specific scales of coefficients as valid time-frequency features and abandon the other coefficients. The selected coefficients are fed to the scale-independent convolutional neural network (SI-CNN) as a two-dimensional (2D) matrix. In SI-CNN, a convolution kernel specifically for the time-frequency characteristics of ECG signals is designed. During the convolution process, the independence between each scale of coefficient is preserved, and the time domain and the frequency domain characteristics of the ECG signal are effectively extracted, and finally the atrial fibrillation signal is quickly and accurately identified. In this study, experiments are performed using the MIT-BIH AFDB data in 5-s data segments. We achieve 99.03% sensitivity, 99.35% specificity, and 99.23% overall accuracy. The SS-SWT and SI-CNN we propose simplify the feature extraction step, effectively extracts the features of ECG, and reduces the feature redundancy that may be caused by wavelet transform. The results shows that the method can effectively detect atrial fibrillation signals and has potential in clinical application.


2020 ◽  
Vol 10 (3) ◽  
pp. 976
Author(s):  
Rana N. Costandy ◽  
Safa M. Gasser ◽  
Mohamed S. El-Mahallawy ◽  
Mohamed W. Fakhr ◽  
Samir Y. Marzouk

Electrocardiogram (ECG) signal analysis is a critical task in diagnosing the presence of any cardiac disorder. There are limited studies on detecting P-waves in various atrial arrhythmias, such as atrial fibrillation (AFIB), atrial flutter, junctional rhythm, and other arrhythmias due to P-wave variability and absence in various cases. Thus, there is a growing need to develop an efficient automated algorithm that annotates a 2D printed version of P-waves in the well-known ECG signal databases for validation purposes. To our knowledge, no one has annotated P-waves in the MIT-BIH atrial fibrillation database. Therefore, it is a challenge to manually annotate P-waves in the MIT-BIH AF database and to develop an automated algorithm to detect the absence and presence of different shapes of P-waves. In this paper, we present the manual annotation of P-waves in the well-known MIT-BIH AF database with the aid of a cardiologist. In addition, we provide an automatic P-wave segmentation for the same database using a fully convolutional neural network model (U-Net). This algorithm works on 2D imagery of printed ECG signals, as this type of imagery is the most commonly used in developing countries. The proposed automatic P-wave detection method obtained an accuracy and sensitivity of 98.56% and 98.78%, respectively, over the first 5 min of the second lead of the MIT-BIH AF database (a total of 8280 beats). Moreover, the proposed method is validated using the well-known automatically and manually annotated QT database (a total of 11,201 and 3194 automatically and manually annotated beats, respectively). This results in accuracies of 98.98 and 98.9%, and sensitivities of 98.97 and 97.24% for the automatically and manually annotated QT databases, respectively. Thus, these results indicate that the proposed automatic method can be used for analyzing long-printed ECG signals on mobile battery-driven devices using only images of the ECG signals, without the need for a cardiologist.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Fengying Ma ◽  
Jingyao Zhang ◽  
Wei Chen ◽  
Wei Liang ◽  
Wenjia Yang

Atrial fibrillation (AF) is a common abnormal heart rhythm disease. Therefore, the development of an AF detection system is of great significance to detect critical illnesses. In this paper, we proposed an automatic recognition method named CNN-LSTM to automatically detect the AF heartbeats based on deep learning. The model combines convolutional neural networks (CNN) to extract local correlation features and uses long short-term memory networks (LSTM) to capture the front-to-back dependencies of electrocardiogram (ECG) sequence data. The CNN-LSTM is feeded by processed data to automatically detect AF signals. Our study uses the MIT-BIH Atrial Fibrillation Database to verify the validity of the model. We achieved a high classification accuracy for the heartbeat data of the test set, with an overall classification accuracy rate of 97.21%, sensitivity of 97.34%, and specificity of 97.08%. The experimental results show that our model can robustly detect the onset of AF through ECG signals and achieve stable classification performance, thereby providing a suitable candidate for the automatic classification of AF.


Atrial fibrillation (AF) is one among the foremost common heart arrhythmias. It is terribly tough to discover unless a precise arrhythmia episode happens throughout the exploration. If the diagnosis and the treatment is delayed the Atrial fibrillation can lead to heart strokes and causes death, therefore automatic detection of AF is an urgent need. The analysis of ECG recordings is considered as one of the typical process of detecting AF. The ECG signals analysed by considering normal rhythm (N), other arrhythmias (O) and Atrial Fibrillation(A) and noises. In this paper the proposed technique is validated by considering open accessible public dataset. In the proposed method initially pre-processing of ECG signal is performed, next extraction of features, optimizing the features using genetic algorithm (GA) and finally classifying using support vector machine (SVM) classifier. The proposed algorithm achieves overall accuracy of 95.8% and by considering top 10 features the rate of accuracy is 96.8% which is better compared to the existing algorithm with an SNR of dB. The experimental results are performed using MATLAB and uggest that by availing the short ECG recording also the detection of AF is obtained accurately.


Author(s):  
Qingsong Xie ◽  
Shikui Tu ◽  
Guoxing Wang ◽  
Yong Lian ◽  
Lei Xu

For the problem of early detection of atrial fibrillation (AF) from electrocardiogram (ECG), it is difficult to capture subject-invariant discriminative features from ECG signals, due to the high variation in ECG morphology across subjects and the noise in ECG. In this paper, we propose an Discrete Biorthogonal Wavelet Transform (DBWT) Based Convolutional Neural Network (CNN) for AF detection, shortly called DBWT-AFNet. In DBWT-AFNet, rather than directly feeding ECG into CNN, DBWT is used to separate sub-signals in frequency band of heart beat from ECG, whose output is fed to CNN for AF diagnosis. Such sub-signals are better than the raw ECG for subject-invariant CNN representation learning because noisy information irrelevant to human beat has been largely filtered out. To strengthen the generalization ability of CNN to discover subject-invariant pattern in ECG, skip connection is exploited to propagate information well in neural network and channel attention is designed to adaptively highlight informative channel-wise features. Experiments show that the proposed DBWT-AFNet outperforms the state-of- the-art methods, especially for ECG segments classification across different subjects, where no data from testing subjects have been used in training.


2015 ◽  
Vol 7 (3) ◽  
pp. 300-303
Author(s):  
Andrius Gudiškis

This paper proposes an algorithm to reduce the noise distortion influence in heartbeat annotation detection in electrocardiogram (ECG) signals. Boundary estimation module is based on energy detector. Heartbeat detection is usually performed by QRS detectors that are able to find QRS regions in a ECG signal that are a direct representation of a heartbeat. However, QRS performs as intended only in cases where ECG signals have high signal to noise ratio, when there are more noticeable signal distortion detectors accuracy decreases. Proposed algorithm uses additional data, taken from arterial blood pressure signal which was recorded in parallel to ECG signal, and uses it to support the QRS detection process in distorted signal areas. Proposed algorithm performs as well as classical QRS detectors in cases where signal to noise ratio is high, compared to the heartbeat annotations provided by experts. In signals with considerably lower signal to noise ratio proposed algorithm improved the detection accuracy to up to 6%. Širdies ritmas yra vienas svarbiausių ir daugiausia informacijos apie pacientų būklę teikiančių fiziologinių parametrų. Širdies ritmas nustatomas iš elektrokardiogramos (EKG), atliekant QRS regionų, kurie yra interpretuojami kaip širdies dūžio ãtskaitos, paiešką. QRS regionų aptikimas yra klasikinis uždavinys, nagrinėjamas jau keletą dešimtmečių, todėl širdies dūžių nustatymo iš EKG signalų metodų yra labai daug. Deja, šie metodai tikslūs ir patikimi tik esant dideliam signalo ir triukšmo santykiui. Kai EKG signalai labai iškraipomi, QRS aptiktuvai ne visada gali atskirti QRS regioną, o kartais jį randa ten, kur iš tikro jo būti neturėtų. Straipsnyje siūlomas algoritmas, kurį taikant sumažinama triukšmo įtaka nustatant iš EKG signalų QRS regionus. Tam naudojamas QRS aptiktuvas, kartu prognozuojantis širdies dūžio atskaitą. Remiamasi arterinio kraujo spaudimo signalo duomenimis, renkama atskaitų statistika ir atliekama jos analizė.


Sign in / Sign up

Export Citation Format

Share Document