scholarly journals Human Milk Fat Substitutes from Lard and Hemp Seed Oil Mixtures

2021 ◽  
Vol 11 (15) ◽  
pp. 7014
Author(s):  
Joanna Bryś ◽  
Agata Górska ◽  
Ewa Ostrowska-Ligęza ◽  
Magdalena Wirkowska-Wojdyła ◽  
Andrzej Bryś ◽  
...  

This paper discusses our attempt to generate substitutes for human breast milk fat through the interesterification of mixtures composed of lard and hemp (Cannabis sativa) seed oil. The interesterification was run at 60 °C for 2, 4, and 6 h in the presence of Lipozyme RM IM preparation containing a lipase specific for the cleavage of sn-1,3 ester bonds in triacylglycerol molecules. The interesterification products were analyzed regarding their fatty acid composition and distribution in triacylglycerol molecules. In order to assess the quality of the generated substitutes, in the interesterification products the following were determined: acid value, peroxide number, and oxidative stability. The collected data were statistically processed using Tukey’s test. Following the interesterification, the fats revealed an elevated percentage of free fatty acids and primary oxidation products and reduced oxidative stability compared to those of lard. The last of the above-mentioned phenomena could have been due to the incorporation of polyenic fatty acids into the external positions of triacyclglycerols of lard. The interesterification of lard and hemp seed oil allows scientists to acquire substitutes rich in essential fatty acids and similar to human breast milk fat with respect to the distribution of fatty acids in triacylglycerol molecules.

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 534 ◽  
Author(s):  
David Ramiro-Cortijo ◽  
Pratibha Singh ◽  
Yan Liu ◽  
Esli Medina-Morales ◽  
William Yakah ◽  
...  

Human breast milk is the optimal source of nutrition for infant growth and development. Breast milk fats and their downstream derivatives of fatty acids and fatty acid-derived terminal mediators not only provide an energy source but also are important regulators of development, immune function, and metabolism. The composition of the lipids and fatty acids determines the nutritional and physicochemical properties of human milk fat. Essential fatty acids, including long-chain polyunsaturated fatty acids (LCPUFAs) and specialized pro-resolving mediators, are critical for growth, organogenesis, and regulation of inflammation. Combined data including in vitro, in vivo, and human cohort studies support the beneficial effects of human breast milk in intestinal development and in reducing the risk of intestinal injury. Human milk has been shown to reduce the occurrence of necrotizing enterocolitis (NEC), a common gastrointestinal disease in preterm infants. Preterm infants fed human breast milk are less likely to develop NEC compared to preterm infants receiving infant formula. Intestinal development and its physiological functions are highly adaptive to changes in nutritional status influencing the susceptibility towards intestinal injury in response to pathological challenges. In this review, we focus on lipids and fatty acids present in breast milk and their impact on neonatal gut development and the risk of disease.


2018 ◽  
Vol 9 (3) ◽  
pp. 1747-1754 ◽  
Author(s):  
Liang Jie ◽  
Ce Qi ◽  
Jin Sun ◽  
Renqiang Yu ◽  
Xiangyu Wang ◽  
...  

The main BCFAs in preterm breast milk were iso-14:0, iso-15:0, anteiso-15:0, iso-16:0, iso-17:0, and anteiso-17:0, which were low than that in term breast milk. They were mainly located in the sn-2 position of TAGs and concentration in colostrum.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2064 ◽  
Author(s):  
Candice Quin ◽  
Deanna L. Gibson

Human milk is the best nutritional choice for infants. However, in instances where breastfeeding is not possible, infant formulas are used as alternatives. While formula manufacturers attempt to mimic the performance of human breast milk, formula-fed babies consistently have higher incidences of infection from diarrheal diseases than those breastfed. Differences in disease susceptibility, progression and severity can be attributed, in part, to nutritional fatty acid differences between breast milk and formula. Despite advances in our understanding of breast milk properties, formulas still present major differences in their fatty acid composition when compared to human breast milk. In this review, we highlight the role of distinct types of dietary fatty acids in modulating host inflammation, both directly and through the microbiome-immune nexus. We present evidence that dietary fatty acids influence enteric disease susceptibility and therefore, altering the fatty acid composition in formula may be a potential strategy to improve infectious outcomes in formula-fed infants.


1999 ◽  
Vol 8 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Michael Oladipo Ogundele

Several natural components abundant in the fluid phase of human breast-milk have been shown to be inhibitors of complement activationin vitro, particularly the classical pathway. These include lysozyme, lactoferrin, lactalbumin alpha and other ligand chelators, complement regulator proteins and other specific soluble inhibitors of complement activation. Their physiological significance probably resides in their ability to restrictin vivocomplement activation to specialized (compartmentalized) sites on the cellular membrane structures in human milk, represented by the abundant surface area of the milk fat globule membranes. This would serve to prevent inflammatory-induced tissue damage of the delicate immature gastrointestinal tract of the newborn as well as the mammary gland itself. A number of recognized and potential inhibitors of complement activity in human milk and other biological fluids are hereby reviewed, with a proposal of their physiological significance.Abbreviations: HBM, human breast-milk; APC, alternative complement activation pathway; MAC, membrane attack complex (C5b-9); MFGM, milk fat globule membrane


1981 ◽  
Vol 193 (1) ◽  
pp. 47-54 ◽  
Author(s):  
A Imam ◽  
D J R Laurence ◽  
A M Neville

A major periodate–Schiff-positive component from milk-fat-globule membrane of human breast milk has been purified by selectively extracting the membrane glycoproteins, followed by lectin affinity chromatography and gel filtration on Sephadex G-200 in the presence of protein-dissociating agents. The purified glycoprotein, termed epithelial membrane glycoprotein (EMGP-70), has an estimated mol.wt. of 70 000 and yields a single band under reducing conditions on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The glycoprotein contains 13.5% carbohydrate by weight, with fucose, mannose, galactose, N-acetylglucosamine and sialic acid 17.2, 17.0, 21.1, 7.9 and 36.6% respectively of the carbohydrate moiety. Aspartic and glutamic acid and serine are the major amino acid residues.


Author(s):  
Andrew J. Clulow ◽  
Syaza Y. Binte Abu Bakar ◽  
Malinda Salim ◽  
Cameron J. Nowell ◽  
Adrian Hawley ◽  
...  

2021 ◽  
Author(s):  
Andrew Clulow ◽  
Adrian Hawley ◽  
Malinda Salim ◽  
Syaza Binte Abu Bakar ◽  
Cameron Nowell ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Geok Lin Khor ◽  
Seok Shin Tan ◽  
Eline Stoutjesdijk ◽  
Kock Wai Tony Ng ◽  
Ilse Khouw ◽  
...  

The composition of human breast milk changes in the first two months of life, adapting itself to the evolving needs of the growing new-born. Lipids in milk are a source of energy, essential fatty acids (FA), fat-soluble vitamins, and vital bioactive components. Information on breast milk FA of Malaysian lactating women is scarce. Based on convenience sampling, a total of 20 Malay breastfeeding women who fulfilled the inclusion criteria were recruited. Breast milk was collected three times from each subject at consecutive intervals of 2–3 weeks apart. A total of 60 breast milk samples were collected and classified into “transitional milk” (n = 8), “early milk” (n = 26) and “mature milk” (n = 26). All milk samples were air freighted to University of Groningen, Netherlands for analysis. The dominant breast milk FA were oleic acid, constituting 33% of total fatty acids, followed by palmitic acid (26%). Both these FA and the essential FA, linoleic acid (10%) and alpha-linolenic acid (0.4%), showed no significant changes from transitional to mature milk. Breast milk ratio of n-6:n-3 polyunsaturated fatty acids (PUFA) was comparatively high, exceeding 10 throughout the lactation period, suggesting a healthier balance of PUFA intake is needed in pregnancy and at postpartum.


Sign in / Sign up

Export Citation Format

Share Document