scholarly journals Kinematic Analysis and Verification of a New 5-DOF Parallel Mechanism

2021 ◽  
Vol 11 (17) ◽  
pp. 8157
Author(s):  
Yesong Wang ◽  
Changhuai Lyu ◽  
Jiang Liu

This paper first designs a new 5-DOF parallel mechanism with 5PUS-UPU, and then analyses its DOF by traditional Grubler–Kutzbach and motion spiral theory. It theoretically shows that the mechanism meets the requirement of five dimensions of freedoms including three-dimensional movement and two-dimensional rotation. Based on this, the real mechanism is built, but unfortunately it is found unstable in some positions. Grassmann line geometry method is applied to analyze its unstable problem caused by singular posture, and then an improving method is put forward to solve it. With the improved mechanism, closed loop vector method is employed to establish the inverse position equation of the parallel mechanism, and kinematics analysis is carried out to get the mapping relationships between position, speed, and acceleration of moving and fixed platform. Monte Carlo method is used to analyze the workspace of the mechanism, to explore the influencing factors of workspace, and then to get the better workspace. Finally, an experiment is designed to verify the mechanism working performance.

2020 ◽  
Author(s):  
Yesong Wang ◽  
Changhuai Lyu ◽  
Jiang Liu ◽  
Jinguang Zhang ◽  
Zhixin Jia

Abstract This paper first designs a new 5-DOF parallel mechanism with 5PUS-UPU for multi-directional 3D printing, and then analyses its DOF by traditional Grubler-Kutzbach and motion spiral theory. It theoretically shows that the mechanism meets the requirement of 5 dimensions of freedoms including three-dimensional movement and two-dimensional rotation. Basing on this, the real mechanism is built, but unfortunately it is found unstable in some positions. Grassmann line geometry method is applied to analyze its unstable problem caused by singular posture, and then an improving method is put forward to solve it. With the improved mechanism, closed loop vector method is employed to establish the inverse position equation of the parallel mechanism, and kinematics analysis is carried out to get the mapping relationships between position, speed and acceleration of moving and fixed platform, Monte Carlo method is used to analyze the workspace of the mechanism, to explore the influencing factors of workspace, and then to get the better workspace. Finally an experiment is designed to verify the mechanism working performance to satisfy the spatial motion requirements of multi-directional 3D printing.


Author(s):  
Sung Mok Kim ◽  
Kyoosik Shin ◽  
Byung-Ju Yi ◽  
Wheekuk Kim

This paper introduces a novel parallel mechanism having Schönflies motion. The mechanism consists of only two RRPaR-type limbs. After a short description of its structure, its position analysis is conducted and its screw-based kinematic model is derived. Next, its singularity analysis is performed via Grassmann line geometry and then its optimal kinematic characteristics are examined with respect to workspace size and isotropy property. The results show that the proposed parallel mechanism has a very high potential to be used as a manipulator or a haptic device. A prototype of this mechanism was developed and tested to corroborate its performance.


Author(s):  
Yu Zou ◽  
Yuru Zhang ◽  
Yaojun Zhang

This paper deals with the design of singularity-free cable-driven parallel mechanism. Due to the negative effect on the performance, singularities should be avoided in the design. The singular configurations of mechanisms can be numerically determined by calculating the rank of its Jacobian matrix. However, this method is inefficient and non-intuitive. In this paper, we investigate the singularities of planar and spatial cable-driven parallel mechanisms using Grassmann line geometry. Considering cables as line vectors in projective space, the singularity conditions are identified with clear geometric meaning which results in useful method for singularity analysis of the cable-driven parallel mechanisms. The method is applied to 3-DOF planar and 6-DOF spatial cable-driven mechanisms to determine their singular configurations. The results show that the singularities of both mechanisms can be eliminated by changing the dimensions of the mechanisms or adding extra cables.


Author(s):  
Mengli Wu ◽  
Xianqu Yue ◽  
Weibin Chen ◽  
Qi Nie ◽  
Yue Zhang

Aiming at the aircraft composite skin grinding, a new three degree-of-freedom (DOF) parallel mechanism with asymmetrical structure (TAM) is proposed to replace manual grinding. The TAM is achieved by integrating one of active limbs into the passive limb while keeping the required DOF unchanged, which is divided into two closed-loop chains: telescopic rod and parallelogram. The inverse kinematics models of the two chains are established according to closed-loop vector method. Thus, the actuation and the constraint Jacobian matrix are obtained. Based on the perturbation principle, the error modeling of the TAM is built. Adopting the constraint Jacobian matrix, 15 uncompensated errors are distinguished from the error model. In order to improve the working accuracy of the TAM, accuracy analysis and synthesis are necessary for all the uncompensated errors. The mapping function reflects the influence of uncompensated errors on the pose accuracy. The global sensitivity evaluation indexes are established by mapping function. Since Sobol sequences are superior in uniformity and convergence, the Quasi-Monte Carlo method based on Sobol sequences (Sobol-QMC) is introduced for sensitivity analysis. Taking the minimum manufacturing and installation costs as the optimization target, the objective function of accuracy synthesis is constructed. Ultimately, the reasonable tolerance zone of each uncompensated error is calculated by genetic algorithm. Simulation is performed by Sobol-QMC to verify the rationality of the optimization. The results show the probability is above 97% where most pose errors are in [[Formula: see text], [Formula: see text]] within the workspace. Therefore, accuracy synthesis is correct and practical.


2010 ◽  
Vol 2 (3) ◽  
Author(s):  
Ketao Zhang ◽  
Yuefa Fang ◽  
Hairong Fang ◽  
Jian S. Dai

This paper presents a three-spherical kinematic chain based parallel mechanism that evolved from an origami fold. The new parallel mechanism with symmetrical structure consists of a base, a platform, and three-spherical six-bar chains as chain-legs connecting to both base and platform via revolute joints. This paper investigates the constraint of the mechanism by constructing a virtual symmetric plane that is based on the three virtual centers of the spherical chains. Revealing the geometric characteristics and constraint disposition of the constraint screw system, singularity is identified related to the constraint configuration based on Grassmann line geometry and dependency of the constraint screw system, leading to selection of the design parameters that avoid the platform singularity.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yongquan Li ◽  
Yang Zhang ◽  
Lijie Zhang

Abstract The current type synthesis of the redundant actuated parallel mechanisms is adding active-actuated kinematic branches on the basis of the traditional parallel mechanisms, or using screw theory to perform multiple getting intersection and union to complete type synthesis. The number of redundant parallel mechanisms obtained by these two methods is limited. In this paper, based on Grassmann line geometry and Atlas method, a novel and effective method for type synthesis of redundant actuated parallel mechanisms (PMs) with closed-loop units is proposed. Firstly, the degree of freedom (DOF) and constraint line graph of the moving platform are determined successively, and redundant lines are added in constraint line graph to obtain the redundant constraint line graph and their equivalent line graph, and a branch constraint allocation scheme is formulated based on the allocation criteria. Secondly, a scheme is selected and redundant lines are added in the branch chains DOF graph to construct the redundant actuated branch chains with closed-loop units. Finally, the branch chains that meet the requirements of branch chains configuration criteria and F&C (degree of freedom & constraint) line graph are assembled. In this paper, two types of 2 rotational and 1 translational (2R1T) redundant actuated parallel mechanisms and one type of 2 translational and 1 rotational (2T1R) redundant actuated parallel mechanisms with few branches and closed-loop units were taken as examples, and 238, 92 and 15 new configurations were synthesized. All the mechanisms contain closed-loop units, and the mechanisms and the actuators both have good symmetry. Therefore, all the mechanisms have excellent comprehensive performance, in which the two rotational DOFs of the moving platform of 2R1T redundant actuated parallel mechanism can be independently controlled. The instantaneous analysis shows that all mechanisms are not instantaneous, which proves the feasibility and practicability of the method.


Author(s):  
Javier Rolda´n Mckinley ◽  
Carl Crane ◽  
David B. Dooner

This paper introduces a reconfigurable closed-loop spatial mechanism that can be applied to repetitive motion tasks. The concept is to incorporate five pairs of non-circular gears into a six degree-of–freedom closed-loop spatial chain. The gear pairs are designed based on given mechanism parameters and a user defined motion specification of a coupler link of the mechanism. It is shown in the paper that planar gear pairs can be used if the spatial closed-loop chain is comprised of six pairs of parallel joint axes, i.e. the first joint axis is parallel to the second, the third is parallel to the fourth, ..., and the eleventh is parallel to the twelfth. This paper presents the synthesis of the gear pairs that satisfy a specified three-dimensional position and orientation need. Numerical approximations were used in the synthesis the non-circular gear pairs by introducing an auxiliary monotonic parameter associated to each end-effector position to parameterize the motion needs. The findings are supported by a computer animation. No previous known literature incorporates planar non-circular gears to fulfill spatial motion generation needs.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110177
Author(s):  
Jia Yonghao ◽  
Chen Xiulong

For spatial multibody systems, the dynamic equations of multibody systems with compound clearance joints have a high level of nonlinearity. The coupling between different types of clearance joints may lead to abundant dynamic behavior. At present, the dynamic response analysis of the spatial parallel mechanism considering the three-dimensional (3D) compound clearance joint has not been reported. This work proposes a modeling method to investigate the influence of the 3D compound clearance joint on the dynamics characteristics of the spatial parallel mechanism. For this purpose, 3D kinematic models of spherical clearance joint and revolute joint with radial and axial clearances are derived. Contact force is described as normal contact and tangential friction and later introduced into the nonlinear dynamics model, which is established by the Lagrange multiplier technique and Jacobian of constraint matrix. The influences of compound clearance joint and initial misalignment of bearing axes on the system are analyzed. Furthermore, validation of dynamics model is evaluated by ADAMS and Newton–Euler method. This work provides an essential theoretical basis for studying the influences of 3D clearance joints on dynamic responses and nonlinear behavior of parallel mechanisms.


2014 ◽  
Vol 6 ◽  
pp. 131253 ◽  
Author(s):  
Young-Ho Seo ◽  
Ji-Woo Park ◽  
Woo-Jin Song ◽  
Beom-Soo Kang ◽  
Jeong Kim

Springback in metal forming process often results in undesirable shape changes in formed parts and leads to deterioration in product quality. Even though springback can be predicted and compensated for through the theories or methodologies established thus far, an increase in manufacturing cost accompanied by a change in die shape is inevitable. In the present paper, it is suggested that the cost accompanied with springback compensation can be minimized while allowing the processing of various three-dimensional curved surfaces by using a flexible die composed of multiple punches. With the die being very flexible, the iterative trial-and-error method can be readily applied to compensate for the springback. Thus, repeated designing and redesigning of solid or matched dies can be avoided, effectively saving considerable time. Only some adjustments of punch height are required. Detailed designs of the flexible die as well as two core algorithms to control the respective punch heights are described in this paper. In addition, a closed-loop system for the springback compensation using the flexible die is proposed. The amount of springback was simulated by a finite element analysis and the modified displacement adjustment (DA) method as the springback compensation model was used in the closed-loop system. This system was applied to a two-dimensional quadratic shape problem, and its robustness was verified by an experiment.


Sign in / Sign up

Export Citation Format

Share Document