scholarly journals Laser R-Test for Angular Positioning Calibration and Compensation of the Five-Axis Machine Tools

2021 ◽  
Vol 11 (20) ◽  
pp. 9507
Author(s):  
Cao-Sang Tran ◽  
Tung-Hsien Hsieh ◽  
Wen-Yuh Jywe

The angular positioning error of the rotary stage causes low quality in milling various angles of a workpiece. This study proposes a solution that could improve these issues by using our Laser R-test for angular positioning calibration and compensation of the five-axis machine tools in compliance with the simultaneous measurement path of ISO regulations: ISO 10791-6 and ISO 230-2. System uncertainty analysis and calibration were implemented for system prediction. The measurement method proposed in this paper could solve concentricity problems between measurement devices and the rotary table by applying the Cosine theorem with a Cartesian coordinate system. Further, we used the commercial instrument XR20-W (Renishaw, UK) rotary axis calibrator to verify and compare the measured results on a CNC machine tool. The applied system achieves an angular error of 0.0121 degrees for actual workpieces and is smaller than the referring commercial system, which achieves an error of about 0.0022 degrees. The system in this research is useful for five-axis machine tool full calibrations.

2010 ◽  
Vol 455 ◽  
pp. 621-624
Author(s):  
X. Li ◽  
Y.Y. Yu

Because of the practical requirement of real-time collection and analysis of CNC machine tool processing status information, we discuss the necessity and feasibility of applying ubiquitous sensor network(USN) in CNC machine tools by analyzing the characteristics of ubiquitous sensor network and the development trend of CNC machine tools, and application of machine tool thermal error compensation based on USN is presented.


Author(s):  
Zhong Jiang ◽  
Jiexiong Ding ◽  
Qicheng Ding ◽  
Li Du ◽  
Wei Wang

Nowadays the five-axis machine tool is one of the most important foundations of manufacturing industry. To guarantee the accuracy of the complex surface machining, multi-axis linkage performance detection and compensation of five-axis machine tools is necessary. RTCP (Rotation Tool Center Point) is one of the basic essential functions for the five-axis machine tools, which can keep the tool center with the machining trajectory when five axes move synchronously. On the basis of RTCP function, a way to detect multi-axes linkage performance of five-axis machine tools is briefly introduced, and linkage error model is built in accordance with the topological structure of machine tool. Based on the feature of the linkage errors of the five-axis machine tool, the error tracing and compensation method is proposed. Some simulations and experiments that verify the error tracing method could locate the linkage error category are established. Therefore, a new attempt to detect and compensate the linkage error of the five-axis machine tool is provided in this paper.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012113
Author(s):  
Weiwen Ye

Abstract Multi axis CNC machine tool has good linkage processing effect. Through the application of integral impeller in CNC machine tools, to improve the adaptability of CNC machine tools to complex surface processing parts, to improve the accuracy of multi axis CNC machine tools. The first part of this paper introduces the integral impeller and its machining characteristics; the second part introduces the basic NC machining process of integral impeller; the third part discusses the application of impeller in multi axis CNC machine tools from the creation of guide track, the simulation of integral impeller, software processing and generation. The purpose is to provide some reference for the processing and production of integral impeller.


Author(s):  
Xun Xu

The introduction of CNC machines has radically changed the manufacturing industry. Curves are as easy to cut as straight lines, complex 3-D structures are relatively easy to produce, and the number of machining steps that required human action has dramatically reduced. With the increased automation of manufacturing processes with CNC machining, considerable improvements in consistency and quality can be achieved. CNC automation reduced the frequency of errors and provided CNC operators with time to perform additional tasks. CNC automation also allows for more flexibility in the way parts are held in the manufacturing process and the time required to change the machine to produce different components. In a production environment, a series of CNC machines may be combined into one station, commonly called a “cell”, to progressively machine a part requiring several operations. CNC controller is the “brain” of a CNC machine, whereas the physical configuration of the machine tool is the “skeleton”. A thorough understanding of the physical configuration of a machine tool is always a priority for a CNC programmer as well as the CNC machine tool manufacturers. This chapter starts with a historical perspective of CNC machine tools. Two typical types of CNC machine tools (i.e. vertical and horizontal machining centres) are first discussed. Tooling systems for a CNC machine tool are integral part of a CNC system and are therefore elaborated. Also discussed are the four principal elements of a CNC machine tool. They are machine base, machine spindle, spindle drive, and slide drive. What letter should be assigned to a linear or rotary axis and what if a machine tool has two sets of linear axes? These questions are answered later in the chapter. In order for readers to better comprehend the axis and motion designations, a number of machine tool schematics are given.


2014 ◽  
Vol 701-702 ◽  
pp. 874-878
Author(s):  
Shao Hsien Chen ◽  
Chin Mou Hsu ◽  
Kuo Lin Chiu ◽  
Chu Peng Chan

Swivel spindle head is a key component used in five-axis machine tool of high performance and is of great importance in application and design. Nowadays, more and more components are manufactured by high performance multi-axis CNC machine tools, such as components of spaceflight, renewable energy and automobile, etc. Therefore, high performance machine tools of multiple axes are more and more urgently demanded, while Swivel spindle head is one of the most important components for a multi-axis machine tool. Hence, Swivel spindle head is one of the key to developers multi-axis machine tool . The study explores the highly responsive direct-driving motor able to drive the spindle head to rotate with multi-driving rotary technology. The dual-driving motor rotates via multi-driving units, generates torsion that magnifies and eliminates its clearance, and then drives the spindle head to rotate. Results of the test show that the completed machine tool can meet the standards of dual axis rotary head with high preformation in, no matter, speed, distance, positional accuracy, repeated accuracy or maximum torque, etc.


Sign in / Sign up

Export Citation Format

Share Document