scholarly journals The Ensembles of Machine Learning Methods for Survival Predicting after Kidney Transplantation

2021 ◽  
Vol 11 (21) ◽  
pp. 10380
Author(s):  
Yaroslav Tolstyak ◽  
Rostyslav Zhuk ◽  
Igor Yakovlev ◽  
Nataliya Shakhovska ◽  
Michal Gregus ml ◽  
...  

Machine learning is used to develop predictive models to diagnose different diseases, particularly kidney transplant survival prediction. The paper used the collected dataset of patients’ individual parameters to predict the critical risk factors associated with early graft rejection. Our study shows the high pairwise correlation between a massive subset of the parameters listed in the dataset. Hence the proper feature selection is needed to increase the quality of a prediction model. Several methods are used for feature selection, and results are summarized using hard voting. Modeling the onset of critical events for the elements of a particular set is made based on the Kapplan-Meier method. Four novel ensembles of machine learning models are built on selected features for the classification task. Proposed stacking allows obtaining an accuracy, sensitivity, and specifity of more than 0.9. Further research will include the development of a two-stage predictor.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J A Ortiz ◽  
R Morales ◽  
B Lledo ◽  
E Garcia-Hernandez ◽  
A Cascales ◽  
...  

Abstract Study question Is it possible to predict the likelihood of an IVF embryo being aneuploid and/or mosaic using a machine learning algorithm? Summary answer There are paternal, maternal, embryonic and IVF-cycle factors that are associated with embryonic chromosomal status that can be used as predictors in machine learning models. What is known already The factors associated with embryonic aneuploidy have been extensively studied. Mostly maternal age and to a lesser extent male factor and ovarian stimulation have been related to the occurrence of chromosomal alterations in the embryo. On the other hand, the main factors that may increase the incidence of embryo mosaicism have not yet been established. The models obtained using classical statistical methods to predict embryonic aneuploidy and mosaicism are not of high reliability. As an alternative to traditional methods, different machine and deep learning algorithms are being used to generate predictive models in different areas of medicine, including human reproduction. Study design, size, duration The study design is observational and retrospective. A total of 4654 embryos from 1558 PGT-A cycles were included (January-2017 to December-2020). The trophoectoderm biopsies on D5, D6 or D7 blastocysts were analysed by NGS. Embryos with ≤25% aneuploid cells were considered euploid, between 25-50% were classified as mosaic and aneuploid with >50%. The variables of the PGT-A were recorded in a database from which predictive models of embryonic aneuploidy and mosaicism were developed. Participants/materials, setting, methods The main indications for PGT-A were advanced maternal age, abnormal sperm FISH and recurrent miscarriage or implantation failure. Embryo analysis were performed using Veriseq-NGS (Illumina). The software used to carry out all the analysis was R (RStudio). The library used to implement the different algorithms was caret. In the machine learning models, 22 predictor variables were introduced, which can be classified into 4 categories: maternal, paternal, embryonic and those specific to the IVF cycle. Main results and the role of chance The different couple, embryo and stimulation cycle variables were recorded in a database (22 predictor variables). Two different predictive models were performed, one for aneuploidy and the other for mosaicism. The predictor variable was of multi-class type since it included the segmental and whole chromosome alteration categories. The dataframe were first preprocessed and the different classes to be predicted were balanced. A 80% of the data were used for training the model and 20% were reserved for further testing. The classification algorithms applied include multinomial regression, neural networks, support vector machines, neighborhood-based methods, classification trees, gradient boosting, ensemble methods, Bayesian and discriminant analysis-based methods. The algorithms were optimized by minimizing the Log_Loss that measures accuracy but penalizing misclassifications. The best predictive models were achieved with the XG-Boost and random forest algorithms. The AUC of the predictive model for aneuploidy was 80.8% (Log_Loss 1.028) and for mosaicism 84.1% (Log_Loss: 0.929). The best predictor variables of the models were maternal age, embryo quality, day of biopsy and whether or not the couple had a history of pregnancies with chromosomopathies. The male factor only played a relevant role in the mosaicism model but not in the aneuploidy model. Limitations, reasons for caution Although the predictive models obtained can be very useful to know the probabilities of achieving euploid embryos in an IVF cycle, increasing the sample size and including additional variables could improve the models and thus increase their predictive capacity. Wider implications of the findings Machine learning can be a very useful tool in reproductive medicine since it can allow the determination of factors associated with embryonic aneuploidies and mosaicism in order to establish a predictive model for both. To identify couples at risk of embryo aneuploidy/mosaicism could benefit them of the use of PGT-A. Trial registration number Not Applicable


2021 ◽  
Vol 28 (3) ◽  
pp. 183-205

Scientific articles store vast amounts of knowledge amassed through many decades of research. They serve to communicate research results among scientists but also for learning and tracking progress in the field. However, scientific production has risen to levels that make it difficult even for experts to keep up with work in their field. As a remedy, specialized search engines are being deployed, incorporating novel natural language processing and machine learning methods. The task of citation recommendation, in particular, has attracted much interest as it holds promise for improving the quality of scientific production. In this paper, we present the state-of-the-art in citation recommendation: we survey the methods for global and local approaches to the task, the evaluation setups and datasets, and the most successful machine learning models. In addition, we overview two tasks complementary to citation recommendation: extraction of key aspects and entities from articles and citation function classification. With this survey, we hope to provide the ground for understanding current efforts and stimulate further research in this exciting and promising field.


Author(s):  
Vrusha P. Sangodkar

Abstract: Nowadays people are living a luxurious lifestyle, wine has become a part of one's culture. consumption of wine is very common throughout the world so its quality is very important. hence its important to analyse wine quality quality of the wines are usually checked by humans through tasting but it has other physicochemical attributes which affects the taste but the process is slow hence machine learning methods can be used for the same. dataset is taken and feature selection is done using pca feature selection and then accuracy is find using SVM, backpropagation neural network and Random forest algorithm to find which model fits best and gives greater accuracy. Keywords: Data Extraction, PCA, SVM,BP neural network, Randomforest


T-Comm ◽  
2020 ◽  
Vol 14 (10) ◽  
pp. 53-60
Author(s):  
Oleg I. Sheluhin ◽  
◽  
Valentina P. Ivannikova ◽  

A comparative analysis of statistical and model-based methods for selecting the quantity and the composition of informative features was performed using the UNSW-NB15 database for machine learning models training for attack detection. Feature selection is one of the most important steps in data preparation for machine learning tasks. It allows to increase a quality of machine learning models: it reduces sizes of the fitted models, training time and probability of overfitting. The research was conducted using Python programming language libraries: scikit-learn, which includes various machine learning models and functions for data preparation and models estimation, and FeatureSelector, which contains functions for statistical data analysis. Numerical results of experimental research of application of both statistical methods of features selection and machine learning models-based methods are provided. As the result, the reduced set of features is obtained, which allows improving the quality of classification by removing noise features that have little effect on the final result and reducing the quantity of informative features of the data set from 41 to 17. It is shown that the most effective among the analyzed methods for feature selection is the statistical method SelectKBest with the function chi2, which allows to obtain a reduced set of features providing an accuracy of classification as high as 90% in comparation with 74% provided with the full set.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document