scholarly journals Non-Invasive Physical Plasma Enhances the Membrane Permeability to Low Molecular Weight Compounds and Subsequently Leads to the Loss of Cellular ATP and the Devitalization of Epithelial Cancer Cells

2021 ◽  
Vol 11 (21) ◽  
pp. 9801
Author(s):  
Caroline Sander ◽  
Andreas Nitsch ◽  
Holger H. H. Erb ◽  
Eva K. Egger ◽  
Lyubomir Haralambiev ◽  
...  

Non-invasive physical plasma (NIPP) achieves biomedical effects primarily through the formation of reactive oxygen and nitrogen species. In clinical use, these species interact with cells of the treated tissue, affecting the cytoplasmic membrane first. The present study investigated the permeability of the cytoplasmic membrane of breast cancer cells with different fluorescent dyes after NIPP treatment and determined the subsequent effects on cell viability. After NIPP treatment and the associated formation of reactive oxygen species, low molecular weight compounds were able to pass through the cytoplasmic membrane in both directions to a higher extent. Consequently, a loss of cellular ATP into the extracellular space was induced. Due to these limitations in cell physiology, apoptosis was induced in the cancer cells and the entire cell population exhibited decreased cell growth. It can be concluded that NIPP treatment disturbs the biochemical functionality of the cytoplasmic membrane of cancer cells, which massively impairs their viability. This observation opens a vast application horizon of NIPP therapy to treat precancerous and malignant diseases beyond breast cancer therapy.

Soft Matter ◽  
2020 ◽  
Vol 16 (42) ◽  
pp. 9669-9673
Author(s):  
Dmitry V. Vishnevetskii ◽  
Arif R. Mekhtiev ◽  
Tatyana V. Perevozova ◽  
Dmitry V. Averkin ◽  
Alexandra I. Ivanova ◽  
...  

We present a method for the preparation of a new hydrogel based on low molecular weight gelators that exhibits selective toxicity towards MCF-7 human breast cancer cells.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1094 ◽  
Author(s):  
Hsin-Ta Wang ◽  
Po-Chien Chou ◽  
Ping-Han Wu ◽  
Chi-Ming Lee ◽  
Kang-Hsin Fan ◽  
...  

Low-molecular-weight hyaluronic acid (LMWHA) was integrated with superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs). The size distribution, zeta potential, viscosity, thermogravimetric and paramagnetic properties of the LMWHA-Fe3O4 NPs were systematically examined. For cellular experiments, MCF7 breast cancer cell line was carried out. In addition, the cell targeting ability and characteristics of the LMWHA-Fe3O4 NPs for MCF7 breast cancer cells were analyzed using the thiocyanate method and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The experimental results showed that the LMWHA-Fe3O4 NPs were not only easily injectable due to their low viscosity, but also exhibited a significant superparamagnetic property. Furthermore, the in vitro assay results showed that the NPs had negligible cytotoxicity and exhibited a good cancer cell targeting ability. Overall, the results therefore suggest that the LMWHA-Fe3O4 NPs have considerable potential as an injectable agent for enhanced magnetic resonance imaging (MRI) and/or hyperthermia treatment in breast cancer therapy.


Author(s):  
Ellya Sinurat ◽  
Endang Saepudin ◽  
Fildzah Alfita Qosthalani

Fucoidan, a sulfated heteropolysaccharide, consists of L-fucose and sulfate ester groups as the main component. Over the past three decades, fucoidan structures and bioactivities have been widely studied. The chemical components (fucose, galactose, small monosaccharides and also the sulfate) and the molecular weights of fucoidans from different brown seaweed species produce different characteristics and structures of fucoidan. The activity of fucoidan against cancer cells has been reported to be affected strongly by their sulfate content and molecular weight. Low-molecular-weight fucoidans tend to have higher solubility and easily penetrate into cancer cells. The objective of this study was to investigate the effect of hydrolyzed of fucoidan on its anti cancer activity againts the breast cancer T47D cells. In this study, the fucoidan from the brown seaweed Sargassum binderi Sonder was extracted using 0.1 N HCl and was depolymerized by acid hydrolysis at various times and concentrations. Result showed that fucoidan hydrolyzed with 1 M trifluoroacetic acid (TFA) for 1.5 hours reached the maximum depolymerization process and resulted in the decrement of molecular weight from 785.12 kDa to 5.79 kDa as well as sulfate content from 18.63% to 8.69%. The IC50 values of  fucoidan and low molecular weight fucoidan against the breast cancer T47D cells were 60.03 mg/mL and 182.34 mg/ respectively. This result indicated that the sulfate content of fucoidan probably affected its anticancer bioactivities. 


2015 ◽  
Vol 16 (17) ◽  
pp. 7575-7582 ◽  
Author(s):  
Hamed Montazeri ◽  
Saeid Bouzari ◽  
Kayhan Azadmanesh ◽  
Seyed Nasser Ostad ◽  
Mohammad Hossein Ghahremani

Sign in / Sign up

Export Citation Format

Share Document