scholarly journals Thermal Simulation Studies for the Characterization of a Cyclotron Liquid Target with Thick Niobium Target Windows

2021 ◽  
Vol 11 (22) ◽  
pp. 10922
Author(s):  
Sergio J. C. do Carmo ◽  
Pedro M. de Oliveira ◽  
Francisco Alves

This work presents a simulation model developed with the aim to represent and study the thermal behavior of cyclotron liquid targets. Understanding and improving the thermal behavior of the target system is fundamental to improving the target overall performance, especially when using thick target windows, for which a larger amount of heat generated can be limiting. ANSYS CFX and SRIM software were used to develop a simulation model representing the IBA Nirta® Ga-68 liquid target system, to study the use of thick niobium target windows. The model was validated by comparing the results with experimental data obtained for the same liquid target system. In the present study, simulation results and temperature distributions of the main target components were obtained by studying the main parameters of interests, such as the initial temperature and mass flow rate of the coolants, and also distinct target windows with different thicknesses.

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Toheed Akhter ◽  
Humaira Masood Siddiqi ◽  
Zareen Akhter ◽  
M. Saeed Butt

AbstractComposites from some novel polyimide and commercial epoxy were prepared aiming to improve the thermal behavior of epoxy resins. Two diamines namely 4-4'-diamino-4''-hydroxytriphenyl methane (DHTM) and 4-4'- diaminotriphenyl methane (DTM) were synthesized by reacting aniline and aldehydes according to a reported method. The synthesized diamines were blended with commercially available epoxy 1, 4-butanedioldiglycidylether (BDDE) to synthesize model epoxy amine networks which were compared with polyimideepoxy composites. The polyimides were synthesized by reaction of these diamines with aromatic anhydride namely 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA). These synthesized polyimides were dispersed in epoxy diamine networks to prepare composites. All the monomers and composites were characterized by making use of various analytical techniques including FTIR, NMR, TGA, DSC and XRD. Presence of hydroxyl group in the diamine helped in better dispersion of polyimide leading to high Tg and high char yield at 600 °C.


2021 ◽  
Vol 13 (11) ◽  
pp. 5795
Author(s):  
Sławomir Biruk ◽  
Łukasz Rzepecki

Reducing the duration of construction works requires additional organizational measures, such as selecting construction methods that assure a shorter realization time, engaging additional resources, working overtime, or allowing construction works to be performed simultaneously in the same working units. The simultaneous work of crews may affect the quality of works and the efficiency of construction processes. This article presents a simulation model aimed at assessing the impact of the overlap period on the extension of the working time of the crews and the reduction of a repetitive project’s duration in random conditions. The purpose of simulation studies is to provide construction managers with guidelines when deciding on the dates of starting the sequential technological process lines realized by specialized working crews, for sustainable scheduling and organization of construction projects.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
Giulio Lorenzini ◽  
Simone Moretti

High performance heat exchangers represent nowadays the key of success to go on with the trend of miniaturizing electronic components as requested by the industry. This numerical study, based on Bejan’s Constructal theory, analyzes the thermal behavior of heat removing fin modules, comparing their performances when operating with different types of fluids. In particular, the simulations involve air and water (as representative of gases and liquids), to understand the actual benefits of employing a less heat conductive fluid involving smaller pressure losses or vice versa. The analysis parameters typical of a Constructal description (such as conductance or Overall Performance Coefficient) show that significantly improved performances may be achieved when using water, even if an unavoidable increase in pressure losses affects the liquid-refrigerated case. Considering the overall performance: if the parameter called Relevance tends to 0, air prevails; if it tends to 1, water prevails; if its value is about 0.5, water prevails in most of the case studies.


Author(s):  
James Polk ◽  
Dan Goebel ◽  
Ron Watkins ◽  
Kristina Jameson ◽  
Lance Yoneshige

Sign in / Sign up

Export Citation Format

Share Document