scholarly journals Drug Release Kinetics of DOX-Loaded Graphene-Based Nanocarriers for Ovarian and Breast Cancer Therapeutics

2021 ◽  
Vol 11 (23) ◽  
pp. 11151
Author(s):  
Katherine Taylor ◽  
Tanveer A. Tabish ◽  
Roger J. Narayan

Cancer remains one of the leading causes of death worldwide despite extensive efforts at developing curative treatments. Chemotherapy, one of the most common forms of treatment, lacks specificity and can induce collateral damages to healthy surrounding tissues/cells and elicit off-target toxic side effects. The carbon-based nanomaterial graphene, can load aromatic drugs with high efficiency, has good biocompatibility, and can be easily functionalised with targeting ligands, antibodies, and biomolecules to increase the accuracy of targeting specific areas; graphene has therefore been explored as a nanocarrier for classical chemotherapy drugs. In this work, seventeen publications that report the release of doxorubicin (DOX) from 2D graphene-based nanohybrids (graphene oxide and reduced graphene oxide) for the treatment of breast and ovarian cancers have been identified based on a range of inclusion and exclusion criteria. To aid in the clinical translation of proof-of-concept studies, this work identifies the pre-clinical experimental protocols and analyses the release kinetics of these publications. Fifteen of the papers utilised a change in pH as the stimulus for drug release, and two utilised either near infrared (NIR) or ultrasound as the stimulus. The extracted drug release data from these publications were fit to four known kinetic models. It was found that the majority of these data best fit the Weibull kinetic model. The agreement between the kinetic data in previously published literature provides a predictable estimation of DOX release from graphene-based nanocarriers. This study demonstrates the potential conjugation of graphene and DOX in drug delivery applications, and this knowledge can help improve to the design and formulation of future graphene-based nanocarriers. In addition, the use of further experimental testing and the standardisation of experimental protocols will be beneficial for future work. The incorporation of computational modelling prior to pre-clinical testing will also aid in the development of controlled and sustained DOX release systems that offer efficient and efficacious results.

2021 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Koushik Bankura ◽  
Debatri Roy ◽  
Amit Nayak

The present work is focused on the preparation and in vitro release kinetics of liposomal formulation of Leuprolide Acetate. In this work, “Thin Lipid Film Hydration Method” was used for preparation of Leuprolide Acetate loaded liposomes. Prepared liposomal formulations of Leuprolide acetate was evaluated by drug entrapment study, in-vitro drug release kinetics and stability studies. The percentage drug entrapment of Leuprolide acetate for F1 and F2 formulations were found to be 78.14 ± 0.67 and 66.70 ± 0.81% respectively. In-vitro drug release study of liposomal formulations had shown zero order release pattern. Regression co-efficient (R2) value of Zero order kinetics for F1 and F2 formulations were 0.9912 and 0.9676 respectively. After storing formulations for 1 month, stability testing was done at 40C.It was found that all batches were stable. These liposomal formulations of Leuprolide acetate can be formulated for parenteral application to treat prostate cancer and in women, to treat symptoms of endometriosis (overgrowth of uterine lining outside of the uterus) or uterine fibroids.


2006 ◽  
Vol 6 (9) ◽  
pp. 2929-2935 ◽  
Author(s):  
Tse-Ying Liu ◽  
Ting-Yu Liu ◽  
San-Yuan Chen ◽  
Shian-Chuan Chen ◽  
Dean-Mo Liu

In order to explore the effect of nanofiller on the regulation of the drug release behavior from microsphere-embedded hydrogel prepared by carboxymethyl-hexanoyl chitosan (HNOCC) and O-hexanoyl chitosan (OHC), the release kinetics was investigated in terms of various amounts of calcium-deficient hydroxyapatite (CDHA) nanoparticles incorporated. HNOCC is a novel chitosan-based hydrophilic matrix with a burst release profile in a highly swollen state. The drug release kinetics of the HNOCC hydrogel can be regulated by incorporation of well-dispersed CDHA nanoparticles. It was found that the release duration of ibuprofen (IBU) from HNOCC was prolonged with increasing amounts of CDHA which acts as a crosslink agent and diffusion barrier. On the contrary, the release duration of the IBU from OHC (hydrophobic phase) was shortened through increasing the CDHA amount over 5%, which is due to the hydrophilic nature of the CDHA nanoparticles destroying the intermolecular hydrophobic interaction and accelerating OHC degradation. Thus, water accessibility and molecular relaxation were enhanced, resulting in a higher release rate. In addition, sustained and sequential release behavior was achieved by embedding the OHC microspheres (hydrophobic phase) into the HNOCC (hydrophilic phase) matrix, which could significantly prolong the release duration of the HNOCC drug-loaded implant.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Takashi Sasaki ◽  
Hiroaki Matsuura ◽  
Kazuki Tanaka

Porous polymer spheres are promising materials as carriers for controlled drug release. As a new drug-carrier material, blend particles composed of poly(L-lactic acid) (PLLA) and rifampicin were developed using the freeze-drying technique. The blend particles exhibit high porosity with a specific surface area of 10–40 m2 g−1. Both the size and porosity of the particles depend on the concentration of the original solution and on the method of freezing. With respect to the latter, we used the drop method (pouring the original solution dropwise into liquid nitrogen) and the spray method (freezing a mist of the original solution). The release kinetics of rifampicin from the blend particles into water depends significantly on the morphology of the blend particles. The results show that the release rate can be controlled to a great extent by tuning the size and porosity of the blend particles, both of which are varied by parameters such as the solution concentration and the method of freezing.


Author(s):  
Adil Patel ◽  
Ami Kalsariya ◽  
Srushti Patel ◽  
Chandni Patel ◽  
Shreya Patel

The aim of present work is to determine and analyse the kinetics of drug release from the fast dissolving sublingual by employing various mathematical models. A study was done with Cyanocobalamine fast dissolving sublingual films, 1.5 mg/film by employing solvent casting technique using dehydrated banana starch and Gelatin. The in-vitro drug release profile was carried out in pH 6.8 phosphate buffer (900 mL) using USP dissolution apparatus I (Basket) at 50 rpm for 20 mins. The drug release data was obtained, quantitatively correlated and interpreted with various mathematical models viz. Zero order model, first order model, Higuchi model, Hixson-Crowell model and Korsmeyer-Peppas model and evaluated to understand the kinetics of drug release. The criterion for the most suitable model was based on the high degree of coefficient of correlation of drug release profile of Cyanocobalamine fast dissolving sublingual films.


Author(s):  
Maher Amer ◽  
Roland K. Chen

Abstract Microneedles (MNs) provide a minimally invasive alternative to intravitreal injections and a promising means to sustainable ocular drug delivery. To optimize the sustained drug release profile and to ease the administration of the MN array to the eye, the number of MNs in an MN array and their layout need to be carefully selected. In this study, the drug release kinetics of MN arrays with varying numbers of MNs (8, 12, and 16) is studied over a four-week period. The MN arrays show a much more uniform drug release profile than the single injections. Only the 16-needle MN array fully released all the amount of loaded drug at the end of the 4-week period. Both 8- and 12-needle arrays showed a steady release rate over the 4-week period, which is the longest sustained release duration that has been reported. Zero-order models are created to predict drug release profiles for the three MN arrays. It is estimated that the MN array with 8 needles can deliver the drug for up to 6 weeks. The models can be used to design MN arrays with a given targeted therapeutic index for sustained drug delivery.


Author(s):  
Mohammad Salim Hossain ◽  
Reza-ul Jalil ◽  
Selim Reza ◽  
Mohiuddin Abdul Quadir ◽  
CF Hossain

Efficiency of kollicoat EMM 30 D and SR 30D as matrix forming material was investigated. It was found that, theophylline loaded granules prepared with these two polymers could not sustain drug release for a significant period of time. However, compression of these granules into tablets retarded drug release for up to 8 hours. Release was faster from EMM 30D polymeric system than that from SR 30D matrix. Effects of fillers and rate modifiers on drug liberation have been assessed. Incorporation of Avicel RC 591 and starch caused substantial release of theophylline from both the polymeric systems. Avicel PH 101 intensified the retardation effect of both EMM 30D and SR 30D on theophylline release. HPMC 50 cps, when added to the matrix, caused the release of theophylline to follow near zero order pattern. Increasing the content of HPMC in both EMM 30D and SR 30D compressed tablets decreased the rate and extent of theophylline release. In the presence of excipients, no significant differences between rate and extent of drug release from EMM 30D and SR 30D systems were found. Biexponential equation was applied to explore and explain drug release kinetics. It was found that drug release followed Fickian or case I kinetics from EMM 30D compressed tablet while anomalous or non-fickian kinetics of drug release was observed for SR 30D system. Key words: Kolliocoat SR 30D, Kollicoat EMM 30D, Theophylline, Matrix system, Controlled release Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Sign in / Sign up

Export Citation Format

Share Document