Evaluation of Kollicoat SR 30D and Kollicoat EMM 30D as Matrix Former for Controlled Release Drug Delivery

Author(s):  
Mohammad Salim Hossain ◽  
Reza-ul Jalil ◽  
Selim Reza ◽  
Mohiuddin Abdul Quadir ◽  
CF Hossain

Efficiency of kollicoat EMM 30 D and SR 30D as matrix forming material was investigated. It was found that, theophylline loaded granules prepared with these two polymers could not sustain drug release for a significant period of time. However, compression of these granules into tablets retarded drug release for up to 8 hours. Release was faster from EMM 30D polymeric system than that from SR 30D matrix. Effects of fillers and rate modifiers on drug liberation have been assessed. Incorporation of Avicel RC 591 and starch caused substantial release of theophylline from both the polymeric systems. Avicel PH 101 intensified the retardation effect of both EMM 30D and SR 30D on theophylline release. HPMC 50 cps, when added to the matrix, caused the release of theophylline to follow near zero order pattern. Increasing the content of HPMC in both EMM 30D and SR 30D compressed tablets decreased the rate and extent of theophylline release. In the presence of excipients, no significant differences between rate and extent of drug release from EMM 30D and SR 30D systems were found. Biexponential equation was applied to explore and explain drug release kinetics. It was found that drug release followed Fickian or case I kinetics from EMM 30D compressed tablet while anomalous or non-fickian kinetics of drug release was observed for SR 30D system. Key words: Kolliocoat SR 30D, Kollicoat EMM 30D, Theophylline, Matrix system, Controlled release Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website

1970 ◽  
Vol 8 (2) ◽  
pp. 153-159
Author(s):  
Mohammad Borhan Uddin ◽  
Jakir Ahmed Chowdhury ◽  
Kazi Rashidul Azam ◽  
Reza-ul Jalil ◽  
Md Selim Reza

In the present study efficiency of Eudragit NE 30 D and RS 30 D as matrix forming materials was investigated. It was found that theophylline loaded granules prepared with these two polymers could not sustain drug release for a significant period of time. However, compression of these granules into tablets retarded drug release for up to 7 hours. Release was similar with both of the polymers. Effects of fillers and rate modifiers on drug release have been assessed. Incorporation of lactose and starch caused substantial release of theophylline from both the polymeric systems. Avicel PH 101 intensified the retardation effect of both NE 30 D and RS 30 D on theophylline release. Hydrophobic excipients also show retardation of release from both NE 30 D and RS 30 D. Key words: Eudragit RS 30 D; Eudragit NE 30 D; Theophylline; Matrix system; Controlled release DOI: 10.3329/dujps.v8i2.6030 Dhaka Univ. J. Pharm. Sci. 8(2): 153-159, 2009 (December)


Author(s):  
SN Andreevskaya ◽  
TG Smirnova ◽  
EN Antonov ◽  
LN Chernousova ◽  
SE Bogorodsky ◽  
...  

Sustained-release drugs against tuberculosis are a promising approach to therapy since they positively affect patient compliance with long regimens, especially when it comes to the multidrug-resistant form of the disease. Conventional UV-visible spectroscopy does not work well with multicomponential culture media used for growing M. tuberculosis. The aim of this study was to develop a method for evaluating the kinetics of anti-tuberculosis drug released from bioresorbable polymeric carriers suitable for screening a wide range of encapsulated prolonged-release drugs and identifying the best performing candidate. While studying the growth dynamics of the laboratory susceptible strain M. tuberculosis H37Rv in the presence of different levofloxacin concentrations (from 0.03 to 0.4 μg/ml), we developed a model, which is essentially a set of 2 parallel experiments evaluating the kinetics of drug release into the culture medium. The results of these 2 experiments conducted on 3 encapsulated forms of levofloxacin loaded onto bioresorbable polymeric PLGA carriers (particles sized 50 μm and 100 μm and the matrix) revealed that release kinetics of the drug largely depended on the type of polymeric carrier. The best encapsulation of the antibiotic and its gradual release into the culture medium was observed for the matrix. All experiments were run in 3 replicates. The obtained data were analyzed using descriptive statistics.


Author(s):  
WESLEY N OMWOYO ◽  
MAKWENA J MOLOTO

Objective: The objective of the study was to encapsulate ibuprofen (IBU) into solid lipid nanoparticles (SLNs) for enhanced dissolution and achieving a sustained and controlled release of the drug from the nanocarrier. Methods: IBU loaded nanoparticles were prepared by emulsification solvent evaporation technique and characterized by Fourier Transform Infrared spectroscopy, Thermogravimetric Analysis, X-ray diffraction (XRD), and transmission electron microscopy. Release kinetics on the drug-loaded nanoparticles was carried out in phosphate buffer pH 6.8 using pharma test dissolution apparatus adopting shaking basket method at 37°C. Results: The optimized IBU-loaded SLNs had a particle size of 76.40 nm, polydispersity index of 0.275, and zeta potential of −41.3 mV. The encapsulation efficiency (EE) and DL were 99.73% and 2.31%, respectively. The Fourier transform infrared spectroscopy (FTIR) spectra confirmed successful encapsulation of the drug inside the nanocarrier as only peaks responsible for the emulsifier and the binder could be identified. This corroborated well with XRD spectra which showed a completely amorphous state of the drug-loaded nanoparticles as compared to the crystalline nature of the pure drug. The IBU-SLNs showed a release profile of up to 8 h which is a great improvement from other reported works. The drug release pattern of IBU-SLNs was best fitted with Higuchi square root model and followed the Higuchi drug release kinetics. Korsmeyer-Peppas model confirmed a non-Fickian diffusion model for the release of the drug from the matrix system. Conclusion: IBU-loaded SLNs were successfully prepared which had a sustained and controlled release. It was observed that the release of the drug from the matrix was diffusion controlled and time dependent.


2019 ◽  
Author(s):  
Chem Int

This work focus on the study and the elaboration of microspheres based on amoxicillin (AMO), those microspheres were prepared through the oil/water emulsion evaporation technique. Polybutylene succinate (PBS) and Poly(methylmethacrylate) (PMMA) polymeric matrix were used with Tween 80 (T80) and Polyvinyl alcohol (PVA) as emulsifiers. These polymeric systems were analyzed by SEM, FTIR and optical microscopy. The conditions of the microspheres forming were varied and the preparation was performed by changing different parameters such as: the nature of the polymer, the stirring speed, organic solvent, surfactant nature, and concentration, which allows the study of their effect on encapsulation efficiency and drug release kinetics. These parameters affect strongly the size of microspheres, the drug content and the drug release, the latter is settled in an artificially reconstituted media of pH = 1.2 transcribed from the stomachal medium.


Author(s):  
Naga Durga Mani Achyuth S. V ◽  
Ch.Saibabu ◽  
T.Malyadri

Fluvoxamine is an antidepressant that functions pharmacologically as a selective serotonin reuptake inhibitor. Though it is in the same class as other SSRI drugs, it is most often used to treat obsessive-compulsive disorder. As the biological half-life of the drug is 15.6 hrs and belongs to BCS class II. To overcome these problems, Nanoparticles of Fluvoxamine were formulated by using Ethyl Cellulose, Eudragit RS 100 & Eudragit Rl 100 as a polymer by emulsification method. Among all the 9 formulations F6 formulation is optimized, as it shows maximum drug release at the end of 12hrs which suits the controlled release drug delivery system criteria as per our studies, having acceptable particle size, SEM, and Zeta potential value. From the drug release kinetics of the F8 formulation of Losartan Nanoparticles dispersion, it was concluded that the F8 formulation follows Zero-order drug release with super case II transport mechanism.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


2021 ◽  
Vol 7 (1) ◽  
pp. 35-38
Author(s):  
Sudipta Das ◽  
Arnab Samanta ◽  
Koushik Bankura ◽  
Debatri Roy ◽  
Amit Nayak

The present work is focused on the preparation and in vitro release kinetics of liposomal formulation of Leuprolide Acetate. In this work, “Thin Lipid Film Hydration Method” was used for preparation of Leuprolide Acetate loaded liposomes. Prepared liposomal formulations of Leuprolide acetate was evaluated by drug entrapment study, in-vitro drug release kinetics and stability studies. The percentage drug entrapment of Leuprolide acetate for F1 and F2 formulations were found to be 78.14 ± 0.67 and 66.70 ± 0.81% respectively. In-vitro drug release study of liposomal formulations had shown zero order release pattern. Regression co-efficient (R2) value of Zero order kinetics for F1 and F2 formulations were 0.9912 and 0.9676 respectively. After storing formulations for 1 month, stability testing was done at 40C.It was found that all batches were stable. These liposomal formulations of Leuprolide acetate can be formulated for parenteral application to treat prostate cancer and in women, to treat symptoms of endometriosis (overgrowth of uterine lining outside of the uterus) or uterine fibroids.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document