scholarly journals Sequential Movie Genre Prediction Using Average Transition Probability with Clustering

2021 ◽  
Vol 11 (24) ◽  
pp. 11841
Author(s):  
Jihyeon Kim ◽  
Jinkyung Kim ◽  
Jaeyoung Choi

In recent movie recommendations, one of the most important issues is to predict the user’s sequential behavior to be able to suggest the next movie to watch. However, capturing such sequential behavior is not easy because each user’s short-term or long-term behavior must be taken into account. For this reason, many research results show that the performance of recommending a specific movie is not good in a sequential recommendation. In this paper, we propose a cluster-based method for classifying users with similar movie purchase patterns and a movie genre prediction algorithm rather than the movie itself considering their short-term and long-term behaviors. The movie genre prediction does not recommend a specific movie, but it predicts the genre for the next movie to watch in consideration of each user’s preference for the movie genre based on the genre included in the movie. Using this, it will be possible to provide appropriate guidelines for recommending movies including the genres to users who tend to prefer a specific genre. In particular, in this study, users with similar genre preferences are organized into clusters to recommend genres. For clusters that do not have relatively specific tendencies, genre prediction is performed by appropriately trimming genres that are not necessary for recommendation in order to improve performance. We evaluate our method on well-known movie data sets and qualitatively determine that it captures personalized dynamics and is able to make meaningful recommendations.

2021 ◽  
Vol 13 (2) ◽  
pp. 164
Author(s):  
Chuyao Luo ◽  
Xutao Li ◽  
Yongliang Wen ◽  
Yunming Ye ◽  
Xiaofeng Zhang

The task of precipitation nowcasting is significant in the operational weather forecast. The radar echo map extrapolation plays a vital role in this task. Recently, deep learning techniques such as Convolutional Recurrent Neural Network (ConvRNN) models have been designed to solve the task. These models, albeit performing much better than conventional optical flow based approaches, suffer from a common problem of underestimating the high echo value parts. The drawback is fatal to precipitation nowcasting, as the parts often lead to heavy rains that may cause natural disasters. In this paper, we propose a novel interaction dual attention long short-term memory (IDA-LSTM) model to address the drawback. In the method, an interaction framework is developed for the ConvRNN unit to fully exploit the short-term context information by constructing a serial of coupled convolutions on the input and hidden states. Moreover, a dual attention mechanism on channels and positions is developed to recall the forgotten information in the long term. Comprehensive experiments have been conducted on CIKM AnalytiCup 2017 data sets, and the results show the effectiveness of the IDA-LSTM in addressing the underestimation drawback. The extrapolation performance of IDA-LSTM is superior to that of the state-of-the-art methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Octavian Pastravanu ◽  
Mihaela-Hanako Matcovschi

The main purpose of this work is to show that the Perron-Frobenius eigenstructure of a positive linear system is involved not only in the characterization of long-term behavior (for which well-known results are available) but also in the characterization of short-term or transient behavior. We address the analysis of the short-term behavior by the help of the “(M,β)-stability” concept introduced in literature for general classes of dynamics. Our paper exploits this concept relative to Hölder vectorp-norms,1≤p≤∞, adequately weighted by scaling operators, focusing on positive linear systems. Given an asymptotically stable positive linear system, for each1≤p≤∞, we prove the existence of a scaling operator (built from the right and left Perron-Frobenius eigenvectors, with concrete expressions depending onp) that ensures the best possible values for the parametersMandβ, corresponding to an “ideal” short-term (transient) behavior. We provide results that cover both discrete- and continuous-time dynamics. Our analysis also captures the differences between the cases where the system dynamics is defined by matrices irreducible and reducible, respectively. The theoretical developments are applied to the practical study of the short-term behavior for two positive linear systems already discussed in literature by other authors.


2020 ◽  
Vol 34 (06) ◽  
pp. 10352-10360
Author(s):  
Jing Bi ◽  
Vikas Dhiman ◽  
Tianyou Xiao ◽  
Chenliang Xu

Learning from Demonstrations (LfD) via Behavior Cloning (BC) works well on multiple complex tasks. However, a limitation of the typical LfD approach is that it requires expert demonstrations for all scenarios, including those in which the algorithm is already well-trained. The recently proposed Learning from Interventions (LfI) overcomes this limitation by using an expert overseer. The expert overseer only intervenes when it suspects that an unsafe action is about to be taken. Although LfI significantly improves over LfD, the state-of-the-art LfI fails to account for delay caused by the expert's reaction time and only learns short-term behavior. We address these limitations by 1) interpolating the expert's interventions back in time, and 2) by splitting the policy into two hierarchical levels, one that generates sub-goals for the future and another that generates actions to reach those desired sub-goals. This sub-goal prediction forces the algorithm to learn long-term behavior while also being robust to the expert's reaction time. Our experiments show that LfI using sub-goals in a hierarchical policy framework trains faster and achieves better asymptotic performance than typical LfD.


Author(s):  
Huug van den Dool

This is first and foremost a book about short-term climate prediction. The predictions we have in mind are for weather/climate elements, mainly temperature (T) and precipitation (P), at lead times longer than two weeks, beyond the realm of detailed Numerical Weather Prediction (NWP), i.e. predictions for the next month and the next seasons out to at most a few years. call this short-term climate so as to distinguish it from long-term climate change which is not the main subject of this book. A few decades ago “short-term climate prediction” was known as “longrange weather prediction”. In order to understand short-term climate predictions, their skill and what they reveal about the atmosphere, ocean and land, several chapters are devoted to constructing prediction methods. The approach taken is mainly empirical, which means literally that it is based in experience. We will use global data sets to represent the climate and weather humanity experienced (and measured!) in the past several decades. The idea is to use these existing data sets in order to construct prediction methods. In doing so we want to acknowledge that every measurement (with error bars) is a monument about the workings of Nature. We thought about using the word “statistical” instead of “empirical” in the title of the book. These two notions overlap, obviously, but we prefer the word “empirical” because we are driven more by intuition than by a desire to apply existing or developing new statistical theory. While constructing prediction methods we want to discover to the greatest extent possible how the physical system works from observations. While not mentioned in the title, diagnostics of the physical system will thus be an important part of the book as well. We use a variety of classical tools to diagnose the geophysical system. Some of these tools have been developed further and/or old tools are applied in novel ways. We do not intend to cover all diagnostics methods, only those that relate closely to prediction. There will be an emphasis on methods used in operational prediction. It is quite difficult to gain a comprehensive idea from existing literature about methods used in operational short-term climate prediction.


2018 ◽  
Vol 150 ◽  
pp. 462-474 ◽  
Author(s):  
Jing Zhang ◽  
Xiamin Hu ◽  
Liya Kou ◽  
Bing Zhang ◽  
Yuchen Jiang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yangzi Zhao

The stock market is affected by economic market, policy, and other factors, and its internal change law is extremely complex. With the rapid development of the stock market and the expansion of the scale of investors, the stock market has produced a large number of transaction data, which makes it more difficult to obtain valuable information. Because deep neural network is good at dealing with the prediction problems with large amount of data and complex nonlinear mapping relationship, this paper proposes an attention-guided deep neural network stock prediction algorithm. This paper synthesizes the daily stock social media text emotion index and stock technology index as the data source and applies them to the long-term and short-term memory neural network (LSTM) model to predict the stock market. The stock emotion index is extracted by constructing a social text classification emotion model of bidirectional long-term and short-term memory neural network (Bi-LSTM) based on attention mechanism and glove word vector representation algorithm. In addition, a dimensionality reduction model based on decision tree (DT) and principal component analysis (PCA) is constructed to reduce the dimensionality of stock technical indicators and extract the main data information. Furthermore, this paper proposes a model based on nasNet for pattern recognition. The recognition results can be used to automatically identify short-term K-line patterns, predict reliable trading signals, and help investors customize short-term high-efficiency investment strategies. The experimental results show that the prediction accuracy of the proposed algorithm can reach 98.6%, which has high application value.


2020 ◽  
Author(s):  
Lei Qiao ◽  
Gang Chen ◽  
Shaodong Zhang ◽  
Qi Yao ◽  
Wanlin Gong ◽  
...  

Abstract. The Wuhan MST radar is a 53.8 MHz monostatic Doppler radar, located in Chongyang, Hubei Province, China, which has the capability to observe the dynamics of the mesosphere-stratosphere-troposphere region in the subtropical latitudes. The system is composed of 576 Yagi antennas with square distribution, and the maximum peak power is 192 kW. The Wuhan MST radar is efficient and cheap, which applies simplifier and more flexible architecture. It includes 24 big TR modules, and the row/column data port of each big TR module connects 24 small TR modules via the corresponding row/column feeding network. Each antenna is driven by a small TR module with peak output power of 300 W. The arrangement of the antenna field, the functions of the timing signals, the structure of the TR modules, and the clutter suppression procedure are described in detail in this manuscript. We compared the MST radar observation results with other instruments and related models in the whole MST region for validation. Firstly, we made a comparison of the Wuhan MST radar observed horizontal winds in the troposphere and low stratosphere with the radiosonde in the short term, as well as the ERA-interim data sets (2016 and 2017) in the long term. Then, we made a comparison of the observed horizontal winds in the mesosphere with the meteor radar and the HWM-07 model in the same way. In general, good agreements can be obtained, and it indicates that the Wuhan MST is an effective tool to measure the three-dimensional wind fields of the MST region in the short-term and long-term.


Sign in / Sign up

Export Citation Format

Share Document