scholarly journals Are Sustainable Aviation Fuels a Viable Option for Decarbonizing Air Transport in Europe? An Environmental and Economic Sustainability Assessment

2022 ◽  
Vol 12 (2) ◽  
pp. 597
Author(s):  
Alexander Barke ◽  
Timo Bley ◽  
Christian Thies ◽  
Christian Weckenborg ◽  
Thomas S. Spengler

The use of drop-in capable alternative fuels in aircraft can support the European aviation sector to achieve its goals for sustainable development. They can be a transitional solution in the short and medium term, as their use does not require any structural changes to the aircraft powertrain. However, the production of alternative fuels is often energy-intensive, and some feedstocks are associated with harmful effects on the environment. In addition, alternative fuels are often more expensive to produce than fossil kerosene, which can make their use unattractive. Therefore, this paper analyzes the environmental and economic impacts of four types of alternative fuels compared to fossil kerosene in a well-to-wake perspective. The fuels investigated are sustainable aviation fuels produced by power-to-liquid and biomass-to-liquid pathways. Life cycle assessment and life cycle costing are used as environmental and economic assessment methods. The results of this well-to-wake analysis reveal that the use of sustainable aviation fuels can reduce the environmental impacts of aircraft operations. However, an electricity mix based on renewable energies is needed to achieve significant reductions. In addition, from an economic perspective, the use of fossil kerosene ranks best among the alternatives. A scenario analysis confirms this result and shows that the production of sustainable aviation fuels using an electricity mix based solely on renewable energy can lead to significant reductions in environmental impact, but economic competitiveness remains problematic.

2020 ◽  
Vol 12 (14) ◽  
pp. 5663 ◽  
Author(s):  
Sofia Pinheiro Melo ◽  
Alexander Barke ◽  
Felipe Cerdas ◽  
Christian Thies ◽  
Mark Mennenga ◽  
...  

Driven by concerns regarding the sustainability of aviation and the continued growth of air traffic, increasing interest is given to emerging aircraft technologies. Although new technologies, such as battery-electric propulsion systems, have the potential to minimise in-flight emissions and noise, environmental burdens are possibly shifted to other stages of the aircraft’s life cycle, and new socio-economic challenges may arise. Therefore, a life-cycle-oriented sustainability assessment is required to identify these hotspots and problem shifts and to derive recommendations for action for aircraft development at an early stage. This paper proposes a framework for the modelling and assessment of future aircraft technologies and provides an overview of the challenges and available methods and tools in this field. A structured search and screening process is used to determine which aspects of the proposed framework are already addressed in the scientific literature and in which areas research is still needed. For this purpose, a total of 66 related articles are identified and systematically analysed. Firstly, an overview of statistics of papers dealing with life-cycle-oriented analysis of conventional and emerging aircraft propulsion systems is given, classifying them according to the technologies considered, the sustainability dimensions and indicators investigated, and the assessment methods applied. Secondly, a detailed analysis of the articles is conducted to derive answers to the defined research questions. It illustrates that the assessment of environmental aspects of alternative fuels is a dominating research theme, while novel approaches that integrate socio-economic aspects and broaden the scope to battery-powered, fuel-cell-based, or hybrid-electric aircraft are emerging. It also provides insights by what extent future aviation technologies can contribute to more sustainable and energy-efficient aviation. The findings underline the need to harmonise existing methods into an integrated modelling and assessment approach that considers the specifics of upcoming technological developments in aviation.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020181
Author(s):  
Alena J. Raymond ◽  
Alissa Kendall ◽  
Jason T. DeJong ◽  
Edward Kavazanjian ◽  
Miriam A. Woolley ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1172
Author(s):  
Hafiz Haq ◽  
Petri Välisuo ◽  
Seppo Niemi

Industrial symbiosis networks conventionally provide economic and environmental benefits to participating industries. However, most studies have failed to quantify waste management solutions and identify network connections in addition to methodological variation of assessments. This study provides a comprehensive model to conduct sustainable study of industrial symbiosis, which includes identification of network connections, life cycle assessment of materials, economic assessment, and environmental performance using standard guidelines from the literature. Additionally, a case study of industrial symbiosis network from Sodankylä region of Finland is implemented. Results projected an estimated life cycle cost of €115.20 million. The symbiotic environment would save €6.42 million in waste management cost to the business participants in addition to the projected environmental impact of 0.95 million tonne of CO2, 339.80 tonne of CH4, and 18.20 tonne of N2O. The potential of further cost saving with presented optimal assessment in the current architecture is forecast at €0.63 million every year.


2021 ◽  
Vol 3 ◽  
pp. 100074
Author(s):  
Ambika Selvaraj ◽  
Jagrati Gautam ◽  
Shikhar Verma ◽  
Gaurav Verma ◽  
Siddhant Jain

2019 ◽  
Vol 11 (5) ◽  
pp. 1370 ◽  
Author(s):  
Shutaro Takeda ◽  
Alexander Keeley ◽  
Shigeki Sakurai ◽  
Shunsuke Managi ◽  
Catherine Norris

The adoption of renewable energy technologies in developing nations is recognized to have positive environmental impacts; however, what are their effects on the electricity supply chain workers? This article provides a quantitative analysis on this question through a relatively new framework called social life cycle assessment, taking Malaysia as a case example. Impact assessments by the authors show that electricity from renewables has greater adverse impacts on supply chain workers than the conventional electricity mix: Electricity production with biomass requires 127% longer labor hours per unit-electricity under the risk of human rights violations, while the solar photovoltaic requires 95% longer labor hours per unit-electricity. However, our assessment also indicates that renewables have less impacts per dollar-spent. In fact, the impact of solar photovoltaic would be 60% less than the conventional mix when it attains grid parity. The answer of “are renewables as friendly to humans as to the environment?” is “not-yet, but eventually.”


2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.


Sign in / Sign up

Export Citation Format

Share Document