scholarly journals Valley-Selective Response of Nanostructures Coupled to 2D Transition-Metal Dichalcogenides

2018 ◽  
Vol 8 (7) ◽  
pp. 1157 ◽  
Author(s):  
Alexander Krasnok ◽  
Andrea Alù

Monolayer (1L) transition-metal dichalcogenides (TMDCs) are attractive materials for several optoelectronic applications because of their strong excitonic resonances and valley-selective response. Valley excitons in 1L-TMDCs are formed at opposite points of the Brillouin zone boundary, giving rise to a valley degree of freedom that can be treated as a pseudospin, and may be used as a platform for information transport and processing. However, short valley depolarization times and relatively short exciton lifetimes at room temperature prevent using valley pseudospins in on-chip integrated valley devices. Recently, it was demonstrated how coupling these materials to optical nanoantennas and metasurfaces can overcome this obstacle. Here, we review the state-of-the-art advances in valley-selective directional emission and exciton sorting in 1L-TMDC mediated by nanostructures and nanoantennas. We briefly discuss the optical properties of 1L-TMDCs paying special attention to their photoluminescence/absorption spectra, dynamics of valley depolarization, and the valley Hall effect. Then, we review recent works on nanostructures for valley-selective directional emission from 1L-TMDCs.

Nano Letters ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 5719-5725 ◽  
Author(s):  
Nicolas Ubrig ◽  
Sanghyun Jo ◽  
Marc Philippi ◽  
Davide Costanzo ◽  
Helmuth Berger ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (25) ◽  
pp. 12381-12387 ◽  
Author(s):  
Samuel Brem ◽  
Jonas Zipfel ◽  
Malte Selig ◽  
Archana Raja ◽  
Lutz Waldecker ◽  
...  

The reduced dielectric screening in atomically thin transition metal dichalcogenides allows to study the hydrogen-like series of higher exciton states in optical spectra even at room temperature.


Author(s):  
Georgy Ermolaev ◽  
D. Grudinin ◽  
Y. Stebunov ◽  
K. Voronin ◽  
Vasyl Kravets ◽  
...  

Abstract Large optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy was recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Walls interaction. To do this, we carried out a correlative far- and near-field characterization validated by first-principle calculations that reveals an unprecedented birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this outstanding anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.


Nano Letters ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 5214-5220
Author(s):  
Jiaojian Shi ◽  
Edoardo Baldini ◽  
Simone Latini ◽  
Shunsuke A. Sato ◽  
Yaqing Zhang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. A. Ermolaev ◽  
D. V. Grudinin ◽  
Y. V. Stebunov ◽  
K. V. Voronin ◽  
V. G. Kravets ◽  
...  

AbstractLarge optical anisotropy observed in a broad spectral range is of paramount importance for efficient light manipulation in countless devices. Although a giant anisotropy has been recently observed in the mid-infrared wavelength range, for visible and near-infrared spectral intervals, the problem remains acute with the highest reported birefringence values of 0.8 in BaTiS3 and h-BN crystals. This issue inspired an intensive search for giant optical anisotropy among natural and artificial materials. Here, we demonstrate that layered transition metal dichalcogenides (TMDCs) provide an answer to this quest owing to their fundamental differences between intralayer strong covalent bonding and weak interlayer van der Waals interaction. To do this, we made correlative far- and near-field characterizations validated by first-principle calculations that reveal a huge birefringence of 1.5 in the infrared and 3 in the visible light for MoS2. Our findings demonstrate that this remarkable anisotropy allows for tackling the diffraction limit enabling an avenue for on-chip next-generation photonics.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei-Ting Hsu ◽  
Yen-Lun Chen ◽  
Chang-Hsiao Chen ◽  
Pang-Shiuan Liu ◽  
Tuo-Hung Hou ◽  
...  

Abstract A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (∼10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.


Sign in / Sign up

Export Citation Format

Share Document