scholarly journals Silk Protein-Based Membrane for Guided Bone Regeneration

2018 ◽  
Vol 8 (8) ◽  
pp. 1214 ◽  
Author(s):  
Kwang-Jun Kwon ◽  
Hyun Seok

Silk derived from the silkworm is known for its excellent biological and mechanical properties. It has been used in various fields as a biomaterial, especially in bone tissue engineering scaffolding. Recently, silk protein-based biomaterial has been used as a barrier membrane scaffolding for guided bone regeneration (GBR). GBR promotes bone regeneration in bone defect areas using special barrier membranes. GBR membranes should have biocompatibility, biodegradability, cell occlusion, the mechanical properties of space-making, and easy clinical handling. Silk-based biomaterial has excellent biologic and mechanical properties that make it a good candidate to be used as GBR membranes. Recently, various forms of silk protein-based membranes have been introduced, demonstrating excellent bone regeneration ability, including osteogenic cell proliferation and osteogenic gene expression, and promoting new bone regeneration in vivo. In this article, we introduced the characteristics of silk protein as bone tissue engineering scaffolding and the recent application of such silk material as a GBR membrane. We also suggested future studies exploring additional uses of silk-based materials as GBR membranes.

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1174 ◽  
Author(s):  
Shiao-Wen Tsai ◽  
Sheng-Siang Huang ◽  
Wen-Xin Yu ◽  
Yu-Wei Hsu ◽  
Fu-Yin Hsu

Collagen (COL) and hydroxyapatite (HAp) are the major components of bone, therefore, COL-HAp composites have been widely used as bone substitutes to promote bone regeneration. We have reported that HAp-CaO fibers (HANFs), which were fabricated by a sol-gel route followed by an electrospinning technique, possessed good drug-loading efficiency and limited the burst release of tetracycline. In the present study, we used HANF fragments to evaluate the effects of COL-HANF scaffolds on MG63 osteoblast-like cell behaviors. COL-HANF composite scaffolds in which the average diameter of HANFs was approximately 461 ± 186 nm were fabricated by a freeze-drying process. The alkaline phosphatase activity and the protein expression levels of OCN and BSP showed that compared with COL alone, the COL-HANF scaffold promoted the differentiation of MG63 osteoblast-like cells. In addition, the bone regeneration ability of the COL-HANF scaffold was examined by using a rabbit condylar defect model in vivo. The COL-HANF scaffold was biodegradable and promoted bone regeneration eight weeks after the operation. Hence, we concluded that the COL-HANF scaffold has potential as a bone graft for bone tissue engineering.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Sahar Ansari ◽  
Marcelo O. Freire ◽  
Eun-Kyoung Pang ◽  
Alaa I. Abdelhamid ◽  
Mohammad Almohaimeed ◽  
...  

Biomaterials are widely used as scaffolds for tissue engineering. We have developed a strategy for bone tissue engineering that entails application of immobilized anti-BMP-2 monoclonal antibodies (mAbs) to capture endogenous BMPs in vivo and promote antibody-mediated osseous regeneration (AMOR). The purpose of the current study was to compare the efficacy of immobilization of a specific murine anti-BMP-2 mAb on three different types of biomaterials and to evaluate their suitability as scaffolds for AMOR. Anti-BMP-2 mAb or isotype control mAb was immobilized on titanium (Ti) microbeads, alginate hydrogel, and ACS. The treated biomaterials were surgically implanted in rat critical-sized calvarial defects. After 8 weeks,de novobone formation was assessed using micro-CT and histomorphometric analyses. Results showedde novobone regeneration with all three scaffolds with immobilized anti-BMP-2 mAb, but not isotype control mAb. Ti microbeads showed the highest volume of bone regeneration, followed by ACS. Alginate showed the lowest volume of bone. Localization of BMP-2, -4, and -7 antigens was detected on all 3 scaffolds with immobilized anti-BMP-2 mAb implanted in calvarial defects. Altogether, these data suggested a potential mechanism for bone regeneration through entrapment of endogenous BMP-2, -4, and -7 proteins leading to bone formation using different types of scaffoldsviaAMOR.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Bai ◽  
Lijun Li ◽  
Ni Kou ◽  
Yuwen Bai ◽  
Yaoyang Zhang ◽  
...  

Abstract Background Bone tissue engineering is a new concept bringing hope for the repair of large bone defects, which remains a major clinical challenge. The formation of vascularized bone is key for bone tissue engineering. Growth of specialized blood vessels termed type H is associated with bone formation. In vivo and in vitro studies have shown that low level laser therapy (LLLT) promotes angiogenesis, fracture healing, and osteogenic differentiation of stem cells by increasing reactive oxygen species (ROS). However, whether LLLT can couple angiogenesis and osteogenesis, and the underlying mechanisms during bone formation, remains largely unknown. Methods Mouse bone marrow mesenchymal stem cells (BMSCs) combined with biphasic calcium phosphate (BCP) grafts were implanted into C57BL/6 mice to evaluate the effects of LLLT on the specialized vessel subtypes and bone regeneration in vivo. Furthermore, human BMSCs and human umbilical vein endothelial cells (HUVECs) were co-cultured in vitro. The effects of LLLT on cell proliferation, angiogenesis, and osteogenesis were assessed. Results LLLT promoted the formation of blood vessels, collagen fibers, and bone tissue and also increased CD31hiEMCNhi-expressing type H vessels in mBMSC/BCP grafts implanted in mice. LLLT significantly increased both osteogenesis and angiogenesis, as well as related gene expression (HIF-1α, VEGF, TGF-β) of grafts in vivo and of co-cultured BMSCs/HUVECs in vitro. An increase or decrease of ROS induced by H2O2 or Vitamin C, respectively, resulted in an increase or decrease of HIF-1α, and a subsequent increase and decrease of VEGF and TGF-β in the co-culture system. The ROS accumulation induced by LLLT in the co-culture system was significantly decreased when HIF-1α was inhibited with DMBPA and was followed by decreased expression of VEGF and TGF-β. Conclusions LLLT enhanced vascularized bone regeneration by coupling angiogenesis and osteogenesis. ROS/HIF-1α was necessary for these effects of LLLT. LLLT triggered a ROS-dependent increase of HIF-1α, VEGF, and TGF-β and resulted in subsequent formation of type H vessels and osteogenic differentiation of mesenchymal stem cells. As ROS also was a target of HIF-1α, there may be a positive feedback loop between ROS and HIF-1α, which further amplified HIF-1α induction via the LLLT-mediated ROS increase. This study provided new insight into the effects of LLLT on vascularization and bone regeneration in bone tissue engineering.


2010 ◽  
Vol 6 (9) ◽  
pp. 3457-3470 ◽  
Author(s):  
Tao Jiang ◽  
Syam P. Nukavarapu ◽  
Meng Deng ◽  
Ehsan Jabbarzadeh ◽  
Michelle D. Kofron ◽  
...  

2021 ◽  
Author(s):  
Maxime Leblanc Latour ◽  
Maryam Tarar ◽  
Ryan J. Hickey ◽  
Charles M. Cuerrier ◽  
Isabelle Catelas ◽  
...  

Plant-derived cellulose biomaterials have recently been utilized in several tissue engineering applications. These naturally-derived cellulose scaffolds have been shown to be highly biocompatible in vivo, possess structural features of relevance to several tissues, and support mammalian cell invasion and proliferation. Recent work utilizing decellularized apple hypanthium tissue has shown that it possesses a pore size similar to trabecular bone and can successfully host osteogenic differentiation. In the present study, we further examined the potential of apple-derived cellulose scaffolds for bone tissue engineering (BTE) and analyzed their mechanical properties in vitro and in vivo. MC3T3-E1 pre-osteoblasts were seeded in cellulose scaffolds. Following chemically-induced osteogenic differentiation, scaffolds were evaluated for mineralization and for their mechanical properties. Alkaline phosphatase and Alizarin Red staining confirmed the osteogenic potential of the scaffolds. Histological analysis of the constructs revealed cell invasion and mineralization throughout the constructs. Furthermore, scanning electron microscopy demonstrated the presence of mineral aggregates on the scaffolds after culture in differentiation medium, and energy-dispersive spectroscopy confirmed the presence of phosphate and calcium. However, although the Young′s modulus significantly increased after cell differentiation, it remained lower than that of healthy bone tissue. Interestingly, mechanical assessment of acellular scaffolds implanted in rat calvaria defects for 8 weeks revealed that the force required to push out the scaffolds from the surrounding bone was similar to that of native calvarial bone. In addition, cell infiltration and extracellular matrix deposition were visible within the implanted scaffolds. Overall, our results confirm that plant-derived cellulose is a promising candidate for BTE applications. However, the discrepancy in mechanical properties between the mineralized scaffolds and healthy bone tissue may limit their use to low load-bearing applications. Further structural re-engineering and optimization to improve the mechanical properties may be required for load-bearing applications.


2021 ◽  
Vol 16 (1) ◽  
pp. 36-47
Author(s):  
Tianxu Zhang ◽  
Yang Gao ◽  
Weitong Cui ◽  
Yanjing Li ◽  
Dexuan Xiao ◽  
...  

With the rapid development of nanotechnology, various nanomaterials have been applied to bone repair and regeneration. Due to the unique chemical, physical and mechanical properties, nanomaterials could promote stem cells osteogenic differentiation, which has great potentials in bone tissue engineering and exploiting nanomaterials-based bone regeneration strategies. In this review, we summarized current nanomaterials with osteo-induction ability, which could be potentially applied to bone tissue engineering. Meanwhile, the unique properties of these nanomaterials and their effects on stem cell osteogenic differentiation are also discussed. Furthermore, possible signaling pathways involved in the nanomaterials- induced cell osteogenic differentiation are also highlighted in this review.


2016 ◽  
Vol 10 (1) ◽  
pp. 900-919 ◽  
Author(s):  
Shima Salmasi ◽  
Leila Nayyer ◽  
Alexander M. Seifalian ◽  
Gordon W. Blunn

BACKGROUNDStatistical reports show that every year around the world approximately 15 million bone fractures occur; of which up to 10% fail to heal completely and hence lead to complications of non-union healing. In the past, autografts or allografts were used as the “gold standard” of treating such defects. However, due to various limitations and risks associated with these sources of bone grafts, other avenues have been extensively investigated through which bone tissue engineering; in particular engineering of synthetic bone graft substitutes, has been recognised as a promising alternative to the traditional methods.METHODSA selective literature search was performed.RESULTSBone tissue engineering offers unlimited supply, eliminated risk of disease transmission and relatively low cost. It could also lead to patient specific design and manufacture of implants, prosthesis and bone related devices. A potentially promising building block for a suitable scaffold is synthetic nanohydroxyapatite incorporated into synthetic polymers. Incorporation of nanohydroxyapatite into synthetic polymers has shown promising bioactivity, osteoconductivity, mechanical properties and degradation profile compared to other techniques previously considered.CONCLUSIONScientific research, through extensive physiochemical characterisation,in vitroandin vivoassessment has brought together the optimum characteristics of nanohydroxyapatite and various types of synthetic polymers in order to develop nanocomposites of suitable nature for bone tissue engineering. The aim of the present article is to review and update various aspects involved in incorporation of synthetic nanohydroxyapatite into synthetic polymers, in terms of their potentials to promote bone growth and regenerationin vitro,in vivoand consequently in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document