scholarly journals Fault Diagnosis of Rolling Bearings Based on Improved Fast Spectral Correlation and Optimized Random Forest

2018 ◽  
Vol 8 (10) ◽  
pp. 1859 ◽  
Author(s):  
Guiji Tang ◽  
Bin Pang ◽  
Tian Tian ◽  
Chong Zhou

Fault diagnosis of rolling bearings is important for ensuring the safe operation of industrial machinery. How to effectively extract the fault features and select a classifier with high precision is the key to realizing the fault recognition of bearings. Accordingly, a new fault diagnosis method of rolling bearings based on improved fast spectral correlation and optimized random forest (i.e., particle swarm optimization-random forest (PSO-RF)) is proposed in this paper. The main contributions of this study are made from two aspects. One is that an improved fast spectral correlation approach was developed to extract the fault features of bearings and form the feature vector more effectively. The other is that an optimized random forest classifier was developed to achieve highly accurate identification by exploiting particle swarm optimization to select the best parameters of random forest (RF). In the presented method, improved fast spectral correlation was first utilized to analyze the raw vibration signal caused by a faulty bearing to obtain the enhanced envelope spectrum. Then, the amplitudes of the four characteristic cyclic frequencies (i.e., the rotating frequency, the characteristic frequency of outer-race fault, the characteristic frequency of inner-race fault, and the characteristic frequency of rolling element fault) exhibited in the enhanced envelope spectrum were selected to form the feature vector. Finally, the PSO-RF method was introduced for identifying and classifying bearing faults. The experimental investigations demonstrate the proposed method can accurately identify bearing faults and outperform other state-of-art techniques considered.

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 404 ◽  
Author(s):  
Wenlong Fu ◽  
Jiawen Tan ◽  
Yanhe Xu ◽  
Kai Wang ◽  
Tie Chen

Rolling bearings are a vital and widely used component in modern industry, relating to the production efficiency and remaining life of a device. An effective and robust fault diagnosis method for rolling bearings can reduce the downtime caused by unexpected failures. Thus, a novel fault diagnosis method for rolling bearings by fine-sorted dispersion entropy and mutation sine cosine algorithm and particle swarm optimization (SCA-PSO) optimized support vector machine (SVM) is presented to diagnose a fault of various sizes, locations and motor loads. Vibration signals collected from different types of faults are firstly decomposed by variational mode decomposition (VMD) into sets of intrinsic mode functions (IMFs), where the decomposing mode number K is determined by the central frequency observation method, thus, to weaken the non-stationarity of original signals. Later, the improved fine-sorted dispersion entropy (FSDE) is proposed to enhance the perception for relationship information between neighboring elements and then employed to construct the feature vectors of different fault samples. Afterward, a hybrid optimization strategy combining advantages of mutation operator, sine cosine algorithm and particle swarm optimization (MSCAPSO) is proposed to optimize the SVM model. The optimal SVM model is subsequently applied to realize the pattern recognition for different fault samples. The superiority of the proposed method is assessed through multiple contrastive experiments. Result analysis indicates that the proposed method achieves better precision and stability over some relevant methods, whereupon it is promising in the field of fault diagnosis for rolling bearings.


2012 ◽  
Vol 190-191 ◽  
pp. 919-922 ◽  
Author(s):  
Yuan Yan Lin ◽  
Bin Wu Wang

According to the fault type and fault signal of rolling bearing is difficult to predict, the paper proposed a new method to diagnose fault of rolling bearings with the wavelet neural network optimizated by simulated annealing particle swarm optimization. And it was applied to the fault diagnosis of rolling bearing. The experiment shows that this method can reduce the iteration time and improve the accuracy of convergence.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hao Sun ◽  
Ke Li ◽  
Huaqing Wang ◽  
Peng Chen ◽  
Yi Cao

The condition diagnosis of rotating machinery depends largely on the feature analysis of vibration signals measured for the condition diagnosis. However, the signals measured from rotating machinery usually are nonstationary and nonlinear and contain noise. The useful fault features are hidden in the heavy background noise. In this paper, a novel fault diagnosis method for rotating machinery based on multiwavelet adaptive threshold denoising and mutation particle swarm optimization (MPSO) is proposed. Geronimo, Hardin, and Massopust (GHM) multiwavelet is employed for extracting weak fault features under background noise, and the method of adaptively selecting appropriate threshold for multiwavelet with energy ratio of multiwavelet coefficient is presented. The six nondimensional symptom parameters (SPs) in the frequency domain are defined to reflect the features of the vibration signals measured in each state. Detection index (DI) using statistical theory has been also defined to evaluate the sensitiveness of SP for condition diagnosis. MPSO algorithm with adaptive inertia weight adjustment and particle mutation is proposed for condition identification. MPSO algorithm effectively solves local optimum and premature convergence problems of conventional particle swarm optimization (PSO) algorithm. It can provide a more accurate estimate on fault diagnosis. Practical examples of fault diagnosis for rolling element bearings are given to verify the effectiveness of the proposed method.


2013 ◽  
Vol 32 (2) ◽  
pp. 432-435
Author(s):  
Zhi-min CHEN ◽  
Yu-ming BO ◽  
Pan-long WU ◽  
Meng-chu TIAN ◽  
Shao-xin LI ◽  
...  

Author(s):  
Jiatang Cheng ◽  
Yan Xiong

Background: The effective diagnosis of wind turbine gearbox fault is an important means to ensure the normal and stable operation and avoid unexpected accidents. Methods: To accurately identify the fault modes of the wind turbine gearbox, an intelligent diagnosis technology based on BP neural network trained by the Improved Quantum Particle Swarm Optimization Algorithm (IQPSOBP) is proposed. In IQPSO approach, the random adjustment scheme of contractionexpansion coefficient and the restarting strategy are employed, and the performance evaluation is executed on a set of benchmark test functions. Subsequently, the fault diagnosis model of the wind turbine gearbox is built by using IQPSO algorithm and BP neural network. Results: According to the evaluation results, IQPSO is superior to PSO and QPSO algorithms. Also, compared with BP network, BP network trained by Particle Swarm Optimization (PSOBP) and BP network trained by Quantum Particle Swarm Optimization (QPSOBP), IQPSOBP has the highest diagnostic accuracy. Conclusion: The presented method provides a new reference for the fault diagnosis of wind turbine gearbox.


2012 ◽  
Vol 562-564 ◽  
pp. 1336-1339
Author(s):  
Hai Lun Wang ◽  
Jian Wei Shen

In this paper, a method for GIS equipment fault diagnosis by the analysis of volume fractions of the derivatives of SF6 gas inside GIS equipment is presented. For the method, based on the differential spectra method, a neural network model and the particle swarm optimization are used for training analysis of infrared spectra, to realize the quantitative analysis of specific derivatives. The experimental results show that the prediction errors obtained by particle swarm optimization training are markedly superior to prediction errors obtained using the traditional method.


2013 ◽  
Vol 756-759 ◽  
pp. 3804-3808
Author(s):  
Zhi Mei Duan ◽  
Jia Tang Cheng

In order to improve the accuracy of fault diagnosis of power transformer, in this paper, a method is proposed that optimize the weight of BP neural network by adaptive mutation particle swarm optimization (AMPSO). According to the characteristic of transformer fault, the optimized neural network is used to diagnose fault of the power transformer. Individual particles action is amended by this algorithm and local minima problems of the standard PSO and BP network are overcooked. The experimental results show that, the method can classify transformer faults, and effectively improve the fault recognition rate.


2021 ◽  
pp. 1-15
Author(s):  
Zhaozhao Xu ◽  
Derong Shen ◽  
Yue Kou ◽  
Tiezheng Nie

Due to high-dimensional feature and strong correlation of features, the classification accuracy of medical data is not as good enough as expected. feature selection is a common algorithm to solve this problem, and selects effective features by reducing the dimensionality of high-dimensional data. However, traditional feature selection algorithms have the blindness of threshold setting and the search algorithms are liable to fall into a local optimal solution. Based on it, this paper proposes a hybrid feature selection algorithm combining ReliefF and Particle swarm optimization. The algorithm is mainly divided into three parts: Firstly, the ReliefF is used to calculate the feature weight, and the features are ranked by the weight. Then ranking feature is grouped according to the density equalization, where the density of features in each group is the same. Finally, the Particle Swarm Optimization algorithm is used to search the ranking feature groups, and the feature selection is performed according to a new fitness function. Experimental results show that the random forest has the highest classification accuracy on the features selected. More importantly, it has the least number of features. In addition, experimental results on 2 medical datasets show that the average accuracy of random forest reaches 90.20%, which proves that the hybrid algorithm has a certain application value.


Sign in / Sign up

Export Citation Format

Share Document