scholarly journals Impact of Cubic Symmetry on Optical Activity of Dielectric 8-srs Networks

2018 ◽  
Vol 8 (11) ◽  
pp. 2104 ◽  
Author(s):  
Elena Goi ◽  
Benjamin Cumming ◽  
Min Gu

Photonic crystals are engineered structures able to control the propagation and properties of light. Due to this ability, they can be fashioned into optical components for advanced light manipulation and sensing. For these applications, a particularly interesting case study is the gyroid srs-network, a three-dimensional periodic network with both cubic symmetry and chirality. In this work we present the fabrication and characterization of three-dimensional cubically symmetric 8-srs photonic crystals derived from combination of eight individual gyroid srs-networks. We numerically and experimentally investigate optical properties of these photonic crystals and study in particular, the impact of cubic symmetry on transmission and optical activity (OA). Gyroid photonic crystals fabricated in this work can lead to the development of smaller, cheaper, and more efficient optical components with functionalities that go beyond the concept of lenses.

2020 ◽  
Vol 1003 ◽  
pp. 165-172 ◽  
Author(s):  
Ritu Walia ◽  
Kamal Nain Chopra

This paper presents an Exhaustive Analysis of the Characterization of Photopolymer Material (SZ2080) by Two-Photon Polymerization, and some of the modern concepts like Characterization of Photonic Crystals in Photopolymer SZ2080 by Two-Photon Polymerization, Waves Moving in a Periodic Potential, and Optical Quantum metamaterials. Two-photon polymerization for fabricating three-dimensional subdiffraction-limited structures has been discussed. Experimental and Computed Curves of line thickness (nm) vs feed rate (μm/s) have been technically analyzed. Waves moving in a Periodic Potential and Photonic Crystals have been technically discussed. In addition, Optical Quantum metamaterials have been discussed in terms of quantum coherence, and quantum dots with emphasis on cavity array metamaterial.


Amino Acids ◽  
2019 ◽  
Vol 51 (10-12) ◽  
pp. 1409-1431 ◽  
Author(s):  
Luigi Grassi ◽  
Chiara Cabrele

Abstract Peptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.


2009 ◽  
Vol 94 (4) ◽  
pp. 041122 ◽  
Author(s):  
Yu-Lin Yang ◽  
Fu-Ju Hou ◽  
Shich-Chuan Wu ◽  
Wen-Hsien Huang ◽  
Ming-Chih Lai ◽  
...  

2018 ◽  
pp. 20170977 ◽  
Author(s):  
Maha Hussien Helal ◽  
Sahar Mahmoud Mansour ◽  
Lamia Adel Salaleldin ◽  
Basma Mohamed Alkalaawy ◽  
Dorria Saleh Salem ◽  
...  

Author(s):  
Aikaterini Kefala ◽  
Dina Kotsifaki ◽  
Mary Providaki ◽  
Maria Amprazi ◽  
Michael Kokkinidis

Earlier studies have found that the occurrence of inverse sequence identity in proteins is not indicative of three-dimensional similarity, but rather leads to different folds or unfolded proteins. Short helices, however, frequently keep their conformations when their sequences are inverted. To explore the impact of sequence inversion on long helices, revRM6, with the inverse amino-acid sequence relative to RM6, a highly stable variant of the ColE1 Rop protein, was engineered. RM6 is a highly regular four-α-helical bundle that serves as a model system for protein-folding studies. Here, the crystallization and preliminary crystallographic characterization of revRM6 are reported. The protein was overexpressed inEscherichia coli, purified to homogeneity and crystallized. The crystals belonged to space groupP41212, with unit-cell parametersa=b= 44.98,c= 159.74 Å, and diffracted to a resolution of 3.45 Å.


2005 ◽  
Vol 22 (2) ◽  
pp. 370 ◽  
Author(s):  
J. Shah ◽  
K. D. Möller ◽  
H. Grebel ◽  
O. Sternberg ◽  
J. M. Tobias

2014 ◽  
Vol 2 (3) ◽  
Author(s):  
Yinan Tian ◽  
Hyukjoon Kwon ◽  
Yung C. Shin ◽  
Galen B. King

Two-photon polymerization (2PP) is a powerful technique in fabricating three-dimensional subdiffraction-limited structures. In this paper, 2PP was applied to generate woodpile structures, one kind of photonic crystal, using SZ2080, which is widely used in 2PP due to its negligible shrinkage. First, the relationship between scanning speed, laser power, and resolution was determined through fabricating free-hanging lines by theoretical and experimental study. Based on this relationship, woodpile structures with different period distances were fabricated with high uniformity as shown by scanning electron microscopy (SEM) images. Then optical properties of woodpile structures were investigated using Fourier transform infrared spectroscopy (FTIR) and a quantitative empirical relationship between period distance and band gaps was established. The empirical relationship can be applied to design woodpile photonic crystals for the optical sensors and filters.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3144
Author(s):  
Dmitry Tikhonov ◽  
Liudmila Kulikova ◽  
Arthur Kopylov ◽  
Kristina Malsagova ◽  
Alexander Stepanov ◽  
...  

New advances in protein post-translational modifications (PTMs) have revealed a complex layer of regulatory mechanisms through which PTMs control cell signaling and metabolic pathways, contributing to the diverse metabolic phenotypes found in cancer. Using conformational templates and the three-dimensional (3D) environment investigation of proteins in patients with colorectal cancer, it was demonstrated that most PTMs (phosphorylation, acetylation, and ubiquitination) are localized in the supersecondary structures (helical pairs). We showed that such helical pairs are represented on the outer surface of protein molecules and characterized by a largely accessible area for the surrounding solvent. Most promising and meaningful modifications were observed on the surface of vitamin D-binding protein (VDBP), complement C4-A (CO4A), X-ray repair cross-complementing protein 6 (XRCC6), Plasma protease C1 inhibitor (IC1), and albumin (ALBU), which are related to colorectal cancer developing. Based on the presented data, we propose the impact of the observed modifications in immune response, inflammatory reaction, regulation of cell migration, and promotion of tumor growth. Here, we suggest a computational approach in which high-throughput analysis for identification and characterization of PTM signature, associated with cancer metabolic reprograming, can be improved to prognostic value and bring a new strategy to the targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document