scholarly journals Analysis of the Energy Use in the Mexican Residential Sector by Using Two Approaches Regarding the Behavior of the Occupants

2018 ◽  
Vol 8 (11) ◽  
pp. 2136 ◽  
Author(s):  
Ivan Oropeza-Perez ◽  
Astrid Petzold-Rodriguez

An analysis of the energy use in the Mexican residential sector is carried out. To achieve this, two approaches are taken into account. The first one is the usage of low-energy devices, and the second one is the decrease of their time of use. These two approaches are considered in the calculation method with random values of power and time of usage. The energy activities are divided into air-conditioning, illumination & appliances, and refrigeration. After total annual use is validated with the actual values of energy use in 2015, a sensitivity analysis of the approaches used separately and together is carried out in order to determine the potential of energy saving. Thereby, it is found that the most influential parameter for energy saving is the extensive acquisition of more efficient technologies of illumination & appliances, followed by the decrease of use of the same illumination & appliances. Furthermore, with an integrated approach that takes into account both the use of efficient devices and the reduction of their use for the three energy activities, a maximum of 19.67 TWh is calculated in 2015 for the Mexican residential sector. This approach is therefore expected to have a reliable basis for the development and improvement of policies that help to drive energy savings in an extensive manner in Mexico.

Author(s):  
N.Sujith Prasanna ◽  
Dr.J.Nagesh Kumar

Energy cost is significant in many of the manufacturing activities. The efficiency of energy use is quiet low as there are substantial visible and hidden losses. Visible losses can be easily identified and corrective action can be taken. However hidden and indirect losses form a sizeable portion of the losses. Identifying these losses is not easy and requires an integrated approach which includes thorough study of process, operations and their interactions with energy use. Industries across sectors have implemented lean management principles which target various wastes occurring in the plant. This paper discusses case studies which highlight the exploitation of lean tools as a means for unearthing hidden energy saving potential that often go unnoticed. In addition to the energy savings which results in improved profits and competitiveness, the approach also aids the industry to pursue a path of sustainable manufacturing.


2021 ◽  
Author(s):  
◽  
Georgia Alexander

<p>For decades, studies have been suggesting the idea of occupancy sensors in intermittent use spaces for energy savings. This work investigates the potential energy savings of occupancy sensors in hallways, stairwells, seminar rooms and lavatories of an education building. Lighting is one of the largest consumers of energy in the building industry and these space types are often fully illuminated for long periods of vacancy. Lighting is for the user, not the building. Discussions centre around light use habits, energy saving behaviours and sensor technology such as time delay and daylight sensors. The experiment uses wireless light sensors and PIR sensors to measure light energy use and occupant use of 20 intermittent use spaces. A user survey was planned to run alongside the experiment to investigate user perceptions of changes in lighting but was discontinued due to unresolved software issues. Results of the experiment encouraged the use of occupancy sensors in intermittent use spaces. Lavatories attained highest energy saving potential 54%, seminar rooms highest annual cost savings per fitting $15.47 and highest annual energy savings 482kWh and hallways calculated the quickest payback of 8.6 years. Hallways, stairwells, seminar rooms and lavatories all offer potential for energy savings, supporting the theoretical ideas and success of occupancy sensors in intermittent use spaces.</p>


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amna Akhound ◽  
Aseem Majeed Rizvi ◽  
Waqar Ahmed ◽  
Muhammad Nadeem Khan

PurposeEnergy-saving behavior of individuals is essential to minimize energy use and reduce the emission of toxic gases. This study's actual focus is to find out the determinants of the energy-saving behavior of individuals in the workplace.Design/methodology/approachAs a theoretical research model, the extended theory of planned behavior (TPB) has been used to analyze the determinants of energy-saving intentions. A survey method is used to collect 289 valid data, and structural equation modeling (SEM) is used to analyze the data.FindingsThe final result shows that the variables attitude at home, subjective norm (SN) and descriptive norms positively impact intention to save energy at the workplace. In contrast, the construct attitude and perceived behavior control is insignificant in this research. On the other hand, the personal moral norm (PMN) is a powerful predictor of individual energy-saving intentions at the workplace.Originality/valueThis research provides insights that will help the organizations understand the behavior of individuals at the workplace for energy-saving intentions to formulate such policies that will enhance individuals' practice for energy savings.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 105 ◽  
Author(s):  
Hafiz Daraghmeh ◽  
Mohammed Sulaiman ◽  
Kai-Shing Yang ◽  
Chi-Chuan Wang

This study investigates the feasibility of using R-134a filled separated two-phase thermosiphon loop (STPTL) as a free cooling technique in datacenters. Two data center racks one of them is attached with fin and tube thermosiphon were cooled by CRAC unit (computer room air conditioning unit) individually. Thermosiphon can help to partially eliminate the compressor loading of the CRAC; thus, energy saving potential of thermosiphon loop was investigated. The condenser is a water-cooled design and perfluoroalkoxy pipes were used as adiabatic riser/downcomer for easier installation and mobile capability. Tests were conducted with filling ratio ranging from 0 to 90%. The test results indicate that the energy saving increases with the rise of filling ratio and an optimum energy savings of 38.7% can be achieved at filling ratios of 70%, a further increase of filling ratio leads to a reduction in energy saving. At a low filling ratio like 10%, the evaporator starves for refrigerant and a very uneven air temperature distribution occurring at the exit of data rack. The uneven temperature distribution is relieved considerably when the evaporator is fully flooded. It is also found that the energy saving is in line with the rise of system pressure. Overfilling of the evaporator may lead to a decline of system pressure. A lower thermal resistance occurs at high filling ratios and higher ambient temperature.


2011 ◽  
Vol 280 ◽  
pp. 71-75
Author(s):  
Zhong Chao Zhao ◽  
Dong Hui Zhang ◽  
Yu Ping Chen

In this paper, the operation mechanism of combined air-conditioning system with temperature and humidity decoupled treatment (CACSTHDT) was presented, and the energy saving potential and economics of CACSTHDT were primarily analyzed through compared with a traditional air-conditioning system. The results indicated that CACSTHDT could save up to 28.64% energy consumption in comparison with a traditional air-conditioning system. The operating cost in one summer only was 71.36% of that cost of traditional air-conditioning system.


2021 ◽  
Author(s):  
◽  
Georgia Alexander

<p>For decades, studies have been suggesting the idea of occupancy sensors in intermittent use spaces for energy savings. This work investigates the potential energy savings of occupancy sensors in hallways, stairwells, seminar rooms and lavatories of an education building. Lighting is one of the largest consumers of energy in the building industry and these space types are often fully illuminated for long periods of vacancy. Lighting is for the user, not the building. Discussions centre around light use habits, energy saving behaviours and sensor technology such as time delay and daylight sensors. The experiment uses wireless light sensors and PIR sensors to measure light energy use and occupant use of 20 intermittent use spaces. A user survey was planned to run alongside the experiment to investigate user perceptions of changes in lighting but was discontinued due to unresolved software issues. Results of the experiment encouraged the use of occupancy sensors in intermittent use spaces. Lavatories attained highest energy saving potential 54%, seminar rooms highest annual cost savings per fitting $15.47 and highest annual energy savings 482kWh and hallways calculated the quickest payback of 8.6 years. Hallways, stairwells, seminar rooms and lavatories all offer potential for energy savings, supporting the theoretical ideas and success of occupancy sensors in intermittent use spaces.</p>


2021 ◽  
Author(s):  
Sara Damyar

Building envelope retrofits is one of the options available to reduce energy consumption of postwar MURBs in Toronto. This study evaluates the impact of building envelope retrofits that meet current standards on energy consumption of a Toronto postwar MURB; utilizing eQUEST energy simulation software. Further upgrades also take place to evaluate how the impact of building envelope retrofits on energy use can be increased and optimized for all assemblies of building envelope and airtightness. Moreover, the retrofit strategies are ranked based on cost and energy-saving effectiveness. The results of the analysis reveal that building envelope retrofit based on OBC-2012 standards can reduce the energy consumption by up to 44%. Furthermore, the optimal RSI values of all building envelope components were found to be equal or less than code requirements which outcomes significant energy savings. Lastly, the ranking of the strategies helps to identify the best option according to the priorities of a project.


Author(s):  
Nguyen Anh Tuan ◽  
K. D. Huang

In a highly developed living, people are always looking for a comfortable indoor environment with minimum energy use. Individual air-conditioning system (IACS) can create an individual thermal environment control in a workroom which can contribute to save air-conditioning energy. In this study, we analyze the airflow circulation cell of the IACS with varied outlet port opening and outlet port position dimensions using the computational fluid dynamics (CFD) technique. We created an IACS, two workstations, lightings, and a cabinet in a 3-dimensional room. The fluid was assumed to be Newtonian, unsteady, and incompressible. A Bossinesq approximation was determined in order to consider the buoyancy effect. We examined the effects of the outlet port opening and outlet port position on airflow circulation establishing process. Air temperatures along the various midline of the occupied zone were predicted and compared for a range of outlet port opening and outlet port position by using non-dimensional form. We also showed the occupied zone temperature at various planes in the workroom. Results will indicate the suitable outlet port opening and outlet port position for maintaining individual satisfied occupants’ requirements and improving energy saving potential.


2012 ◽  
Vol 622-623 ◽  
pp. 122-129
Author(s):  
Chutima Plodprong ◽  
Worarat Patprakorn ◽  
Pornrapeepat Bhasaputra

This research is study of the air conditioning by used fuzzy logic control to analysis. It will take into account the energy savings and the room temperature remained in range of comfort zone for the resident's satisfaction. To control % AC compressor and fan speed. The system was simulated and designed simulation model of fuzzy logic controlled on Matlab program to monitor energy consumption and temperature of the room. The results indicate that thermal comfort of the room together with energy saving can be obtained through fuzzy logic controlled .At a temperature setting of 25 °C and defined heat load in the room, the energy saving for the system is calculated to 30.77 % for fuzzy controllers when compared with on-off condition.


Sign in / Sign up

Export Citation Format

Share Document