scholarly journals A Fully Coupled Computational Fluid Dynamics Method for Analysis of Semi-Submersible Floating Offshore Wind Turbines Under Wind-Wave Excitation Conditions Based on OC5 Data

2018 ◽  
Vol 8 (11) ◽  
pp. 2314 ◽  
Author(s):  
Yin Zhang ◽  
Bumsuk Kim

Accurate prediction of the time-dependent system dynamic responses of floating offshore wind turbines (FOWTs) under aero-hydro-coupled conditions is a challenge. This paper presents a numerical modeling tool using commercial computational fluid dynamics software, STAR-CCM+(V12.02.010), to perform a fully coupled dynamic analysis of the DeepCwind semi-submersible floating platform with the National Renewable Engineering Lab (NREL) 5-MW baseline wind turbine model under combined wind–wave excitation environment conditions. Free-decay tests for rigid-body degrees of freedom (DOF) in still water and hydrodynamic tests for a regular wave are performed to validate the numerical model by inputting gross system parameters supported in the Offshore Code Comparison, Collaboration, Continued, with Correlations (OC5) project. A full-configuration FOWT simulation, with the simultaneous motion of the rotating blade due to 6-DOF platform dynamics, was performed. A relatively heavy load on the hub and blade was observed for the FOWT compared with the onshore wind turbine, leading to a 7.8% increase in the thrust curve; a 10% decrease in the power curve was also observed for the floating-type turbines, which could be attributed to the smaller project area and relative wind speed required for the rotor to receive wind power when the platform pitches. Finally, the tower-blade interference effects, blade-tip vortices, turbulent wakes, and shedding vortices in the fluid domain with relatively complex unsteady flow conditions were observed and investigated in detail.

Author(s):  
Luigia Riefolo ◽  
Fernando del Jesus ◽  
Raúl Guanche García ◽  
Giuseppe Roberto Tomasicchio ◽  
Daniela Pantusa

The design methodology for mooring systems for a spar buoy wind turbine considers the influence of extreme events and wind/wave misalignments occurring in its lifetime. Therefore, the variety of wind and wave directions affects over the seakeeping and as a result the evaluation of the maxima loads acting on the spar-buoy wind turbine. In the present paper, the importance of wind/wave misalignments on the dynamic response of spar-type floating wind turbine [1] is investigated. Based on standards, International Electrotechnical Commission IEC and Det Norske Veritas DNV the design of position moorings should be carried out under extreme wind/wave loads, taking into account their misalignments with respect to the structure. In particular, DNV standard, in ‘Position mooring’ recommendations, specifies in the load cases definition, if site specific data is not available, to consider non-collinear environment to have wave towards the unit’s bow (0°) and wind 30° relative to the waves. In IEC standards, the misalignment of the wind and wave directions shall be considered to design offshore wind turbines and calculate the loads acting on the support structure. Ultimate Limit State (ULS) analyses of the OC3-Hywind spar buoy wind turbine are conducted through FAST code, a certified nonlinear aero-hydro-servo-elastic simulation tool by the National Renewable Energy Laboratory’s (NREL’s). This software was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. In order to assess the effects of misaligned wind and wave, different wind directions are chosen, maintaining the wave loads perpendicular to the structure. Stochastic, full-fields, turbulence simulator Turbsim is used to simulate the 1-h turbulent wind field. The scope of the work is to investigate the effects of wind/wave misalignments on the station-keeping system of spar buoy wind turbine. Results are presented in terms of global maxima determined through mean up-crossing with moving average, which, then, are modelled by a Weibull distribution. Finally, extreme values are estimated depending on global maxima and fitted on Gumbel distribution. The Most Probable Maximum value of mooring line tensions is found to be influenced by the wind/wave misalignments. The present paper is organized as follows. Section ‘Introduction’, based on a literature study, gives useful information on the previous studies conducted on the wind/wave misalignments effects of floating offshore wind turbines. Section ‘Methodology’ describes the applied methodology and presents the spar buoy wind turbine, the used numerical model and the selected environmental conditions. Results and the corresponding discussion are given in Section ‘Results and discussion’ for each load case corresponding to the codirectional and misaligned wind and wave loads. Results are presented and discussed in time and frequency domains. Finally, in Section ‘Conclusion’ some conclusions are drawn.


2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2020 ◽  
Vol 8 (11) ◽  
pp. 859
Author(s):  
Thanh-Dam Pham ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) have been installed in Europe and Japan with relatively modern technology. The installation of floating wind farms in deep water is recommended because the wind speed is stronger and more stable. The design of the FOWT must ensure it is able to withstand complex environmental conditions including wind, wave, current, and performance of the wind turbine. It needs simulation tools with fully integrated hydrodynamic-servo-elastic modeling capabilities for the floating offshore wind turbines. Most of the numerical simulation approaches consider only first-order hydrodynamic loads; however, the second-order hydrodynamic loads have an effect on a floating platform which is moored by a catenary mooring system. At the difference-frequencies of the incident wave components, the drift motion of a FOWT system is able to have large oscillation around its natural frequency. This paper presents the effects of second-order wave loads to the drift motion of a semi-submersible type. This work also aimed to validate the hydrodynamic model of Ulsan University (UOU) in-house codes through numerical simulations and model tests. The NREL FAST code was used for the fully coupled simulation, and in-house codes of UOU generates hydrodynamic coefficients as the input for the FAST code. The model test was performed in the water tank of UOU.


Author(s):  
Yajun Ren ◽  
Vengatesan Venugopal

Abstract The complex dynamic characteristics of Floating Offshore Wind Turbines (FOWTs) have raised wider consideration, as they are likely to experience harsher environments and higher instabilities than the bottom fixed offshore wind turbines. Safer design of a mooring system is critical for floating offshore wind turbine structures for station keeping. Failure of mooring lines may lead to further destruction, such as significant changes to the platform’s location and possible collisions with a neighbouring platform and eventually complete loss of the turbine structure may occur. The present study focuses on the dynamic responses of the National Renewable Energy Laboratory (NREL)’s OC3-Hywind spar type floating platform with a NREL offshore 5-MW baseline wind turbine under failed mooring conditions using the fully coupled numerical simulation tool FAST. The platform motions in surge, heave and pitch under multiple scenarios are calculated in time-domain. The results describing the FOWT motions in the form of response amplitude operators (RAOs) and spectral densities are presented and discussed in detail. The results indicate that the loss of the mooring system firstly leads to longdistance drift and changes in platform motions. The natural frequencies and the energy contents of the platform motion, the RAOs of the floating structures are affected by the mooring failure to different degrees.


Author(s):  
Daniel Milano ◽  
Christophe Peyrard ◽  
Matteo Capaldo

Abstract The numerical fatigue analysis of floating offshore wind turbines (FOWTs) must account for the environmental loading over a typical design life of 25 years, and the stochastic nature of wind and waves is represented by design load cases (DLCs). In this statistical approach, combinations of wind speeds and directions are associated with different sea states, commonly defined via simplified wave spectra (Pierson-Moskowitz, JONSWAP), and their probability of occurrence is identified based on past observations. However, little is known about the difference between discretizing the wind/wave direction bins into (e.g.) 10deg bins rather than 30deg bins, and the impact it has on FOWT analyses. In addition, there is an interest in identifying the parameters that best represent real sea states (significant wave height, peak period) and wind fields (profile, turbulence) in lumped load cases. In this context, the aim of this work is to better understand the uncertainties associated to wind/wave direction bin size and to the use of metocean parameters as opposed to real wind and sea state conditions. A computational model was developed in order to couple offshore wind turbine models with realistic numerical metocean models, referred to as numerical prototype due to the highly realistic wind/wave conditions in which it operates. This method allows the virtual installation of FOWTs anywhere within a considered spatial domain (e.g. the Mediterranean Sea or the North Sea) and their behaviour to be evaluated in measured wind and modelled wave conditions. The work presented in this paper compares the long-term dynamic behaviour of a tension-leg platform (TLP) FOWT design subject to the numerical prototype and to lumped load cases with different direction bin sizes. Different approaches to representing the wind filed are also investigated, and the modelling choices that have the greatest impact on the fidelity of lumped load cases are identified. The fatigue analysis suggests that 30deg direction bins are sufficient to reliably represent long-term wind/wave conditions, while the use of a constant surface roughness length (as suggested by the IEC standards) seems to significantly overestimate the cumulated damage on the tower of the FOWT.


Author(s):  
Xiaohong Chen ◽  
Qing Yu

This paper presents the research in support of the development of design requirements for floating offshore wind turbines (FOWTs). An overview of technical challenges in the design of FOWTs is discussed, followed by a summary of the case studies using representative FOWT concepts. Three design concepts, including a Spar-type, a TLP-type and a Semisubmersible-type floating support structure carrying a 5-MW offshore wind turbine, are selected for the case studies. Both operational and extreme storm conditions on the US Outer Continental Shelf (OCS) are considered. A state-of-the-art simulation technique is employed to perform fully coupled aero-hydro-servo-elastic analysis using the integrated FOWT model. This technique can take into account dynamic interactions among the turbine Rotor-Nacelle Assembly (RNA), turbine control system, floating support structure and stationkeeping system. The relative importance of various design parameters and their impact on the development of design criteria are evaluated through parametric analyses. The paper also introduces the design requirements put forward in the recently published ABS Guide for Building and Classing Floating Offshore Wind Turbine Installations (ABS, 2013).


Sign in / Sign up

Export Citation Format

Share Document