scholarly journals The Fractional Form of the Tinkerbell Map Is Chaotic

2018 ◽  
Vol 8 (12) ◽  
pp. 2640 ◽  
Author(s):  
Adel Ouannas ◽  
Amina-Aicha Khennaoui ◽  
Samir Bendoukha ◽  
Thoai Vo ◽  
Viet-Thanh Pham ◽  
...  

This paper is concerned with a fractional Caputo-difference form of the well-known Tinkerbell chaotic map. The dynamics of the proposed map are investigated numerically through phase plots, bifurcation diagrams, and Lyapunov exponents considered from different perspectives. In addition, a stabilization controller is proposed, and the asymptotic convergence of the states is established by means of the stability theory of linear fractional discrete systems. Numerical results are employed to confirm the analytical findings.

Author(s):  
Samir Bendoukha

Abstract In this paper, we propose and study a fractional Caputo-difference map based on the 2D generalized Hénon map. By means of numerical methods, we use phase plots and bifurcation diagrams to investigate the rich dynamics of the proposed map. A 1D synchronization controller is proposed similar to that of Pecora and Carrol, whereby we assume knowledge of one of the two states at the slave and replicate the second state. The stability theory of fractional discrete systems is used to guarantee the asymptotic convergence of the proposed controller and numerical simulations are employed to confirm the findings.


2014 ◽  
Vol 24 (12) ◽  
pp. 1450157 ◽  
Author(s):  
Kuniyasu Shimizu

In this study, we construct a circuit composed of bistable oscillators and we report the experimental observations of quasi-periodic waves propagating in the circuit and compare them with the associated numerical results. Two different types of propagating quasi-periodic waves with identical parameter sets are experimentally verified. The associated numerical results are distinguished by comparing trajectories on the phase planes and by analyzing the one-parameter bifurcation diagrams. Furthermore, the experiments reveal five different types of switching oscillations. The associated numerical results are also presented, and the stability of the switching oscillations (when constrained to an invariant subspace) is numerically investigated. We also calculate spectral distribution for one type of the switching oscillation.


2007 ◽  
Vol 17 (10) ◽  
pp. 3657-3661 ◽  
Author(s):  
ARÜNAS TAMAŠEVIČIUS ◽  
TATJANA PYRAGIENĖ ◽  
KȨSTUTIS PYRAGAS ◽  
SKAIDRA BUMELIENĖ ◽  
MANTAS MEŠKAUSKAS

A mathematical model of a recently suggested chaos oscillator for educational purposes is treated and numerical results are presented. Bifurcation diagrams, phase portraits, power spectra, Lyapunov exponents are simulated. In addition, the Feigenbaum number is estimated.


2020 ◽  
Vol 30 (11) ◽  
pp. 2030043
Author(s):  
Gang Dou ◽  
Hai Yang ◽  
Zhenhao Gao ◽  
Peng Li ◽  
Minglong Dou ◽  
...  

This paper presents a new physical [Formula: see text] (SBT) memristor-based chaotic circuit. The equilibrium point and the stability of the chaotic circuit are analyzed theoretically. This circuit system exhibits multiple dynamics such as stable point, periodic cycle and chaos by means of Lyapunov exponents spectra, bifurcation diagrams, Poincaré maps and phase portraits, when the initial state or the circuit parameter changes. Specially, the circuit system exhibits coexisting multi-dynamics. This study provides insightful guidance for the design and analysis of physical memristor-based circuits.


2010 ◽  
Author(s):  
A. Guran ◽  
L. Lebedev ◽  
Michail D. Todorov ◽  
Christo I. Christov

2010 ◽  
Vol 2010 ◽  
pp. 1-23 ◽  
Author(s):  
Josef Diblík ◽  
Denys Ya. Khusainov ◽  
Irina V. Grytsay ◽  
Zdenĕk Šmarda

Many processes are mathematically simulated by systems of discrete equations with quadratic right-hand sides. Their stability is thought of as a very important characterization of the process. In this paper, the method of Lyapunov functions is used to derive classes of stable quadratic discrete autonomous systems in a critical case in the presence of a simple eigenvalueλ=1of the matrix of linear terms. In addition to the stability investigation, we also estimate stability domains.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Wang ◽  
Yuangui Zhou ◽  
Jianyi Xue ◽  
Delan Zhu

We focus on the synchronization of a wide class of four-dimensional (4-D) chaotic systems. Firstly, based on the stability theory in fractional-order calculus and sliding mode control, a new method is derived to make the synchronization of a wide class of fractional-order chaotic systems. Furthermore, the method guarantees the synchronization between an integer-order system and a fraction-order system and the synchronization between two fractional-order chaotic systems with different orders. Finally, three examples are presented to illustrate the effectiveness of the proposed scheme and simulation results are given to demonstrate the effectiveness of the proposed method.


Author(s):  
Shuming Shi ◽  
Fanyu Meng ◽  
Minghui Bai ◽  
Nan Lin

The Lyapunov exponents method is an excellent approach for analyzing the vehicle plane motion stability, and the researchers demonstrated the effectiveness under 2-DOF vehicle model. However, whether the Lyapunov exponents approach can effectively reveal the characteristics of high-DOF nonlinear vehicle model is the key problem at present. In this paper, the Lyapunov exponents is applied to quantitatively analyze the stability of the nonlinear three and five degree of freedom vehicle plane motion system. The different characteristics between 2-DOF and high-DOF model are revealed and explained by using Lyapunov exponents. It illustrates the feasibility of using Lyapunov exponents to analyze the stability of high-DOF vehicle models, which supplements and perfects the existing quantitative analysis conclusion.


Sign in / Sign up

Export Citation Format

Share Document