scholarly journals Broadband Right-Angle Rectangular Waveguide to Substrate Integrated Waveguide Transition with Distributed Impedance Matching Network

2019 ◽  
Vol 9 (3) ◽  
pp. 389 ◽  
Author(s):  
Roberto Vincenti Gatti ◽  
Riccardo Rossi ◽  
Marco Dionigi

A broadband right-angle rectangular waveguide to substrate integrated waveguide transition for hybrid RWG-SIW (rectangular waveguide–substrate integrated waveguide) feeding networks is presented. The narrower return loss bandwidth issue with respect to in-line configurations is addressed with the introduction of a multi-section matching network consisting of a number of symmetric E-plane irises in the rectangular waveguide section. A hybrid design procedure based on circuit simulation and full-wave optimization is outlined and adopted to synthesize three matching networks with respectively one, two, and three irises, according to the bandwidth to be covered. The design procedure is experimentally validated with a proof-of-concept prototype.

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 264
Author(s):  
Roberto Vincenti Gatti ◽  
Riccardo Rossi ◽  
Marco Dionigi

A broadband rectangular waveguide to substrate integrated waveguide power divider for hybrid beam forming networks is presented. Rectangular waveguide symmetric E-plane irises are used to realize a multi-section matching network. A hybrid circuit and full-wave design procedure are described and adopted to synthesize three matching networks with one, two, and three irises, progressively increasing the bandwidth and exceeding the state of the art in the last two cases. Three proof-of-concept prototypes are manufactured and tested to validate the design procedure. Good agreement between simulated and measured performance confirms the validity of the proposed solution.


2018 ◽  
pp. 31-36
Author(s):  
Balázs Matolcsy ◽  
Attila Zólomy

During the analytical design process of wideband impedance matching major problems may arise, that might lead to non-realizable matching networks, preventing the successful impedance matching. In this paper two practical design rules and a simplified equation is presented, supporting the design of physically realizable impedance matching networks. The design rules and calculation technique introduced by this paper is summarized, and validated by microwave circuit simulation examples.


2011 ◽  
Vol 130-134 ◽  
pp. 1990-1993 ◽  
Author(s):  
Kuang Da Wang ◽  
Wei Hong ◽  
Ke Wu

In this paper, a broadband and simple vertical transition between substrate integrated waveguide and standard air-filled rectangular waveguide is design and experimentally verified. From full-wave simulation of the structure, a relative bandwidth of 19.5% in W-band with return loss better than 20dB is reached. Then, five copies of back-to-back connected transitions are fabricated on RT/Duroid 5880 substrate. The experimental results show that the transition pairs have an average of 15% relative bandwidth with return loss better than 12dB and insert loss lower than 1.2dB. To explain the differences between simulated and tested results, an error analysis is presented.


2015 ◽  
Vol 8 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Teng Li ◽  
Wenbin Dou

In this paper, a novel wideband right-angle transition between thin substrate integrated waveguide (SIW) and rectangular waveguide (RWG) based on multi-section structure operating at center frequency 31.5 GHz is presented. A multi-section SIW with a rectangular aperture etched on the broad wall and two stepped ridges embedded in the RWG flange are introduced to obtain a wide impedance matching. The simulations show that the bandwidth with return loss better than 20 dB is about 17 GHz. In order to verify our designs, two back-to-back transitions with different lengths are fabricated and measured. The experimental results agree well with simulations. The proposed component shows an insertion loss less than 0.44 dB and a return loss better than 14.5 dB over 12.15 GH, which corresponds to 38.57% bandwidth.


2015 ◽  
Vol 12 (19) ◽  
pp. 20150682-20150682
Author(s):  
Yong Fang ◽  
Baoqing Zeng ◽  
Zhicai Zhang ◽  
Hai Zhang ◽  
Lei Yu ◽  
...  

2013 ◽  
Vol 49 (9) ◽  
pp. 602-604 ◽  
Author(s):  
R. Głogowski ◽  
J.‐F. Zürcher ◽  
C. Peixeiro ◽  
J.R. Mosig

Sign in / Sign up

Export Citation Format

Share Document