scholarly journals The Influence of the Cartographic Transformation of TLS Data on the Quality of the Automatic Registration

2019 ◽  
Vol 9 (3) ◽  
pp. 509 ◽  
Author(s):  
Jakub Markiewicz ◽  
Dorota Zawieska

This paper discusses the issue of the influence of cartographic Terrestrial Laser Scanning (TLS) data conversion into feature-based automatic registration. Automatic registration of data is a multi-stage process, it is based on original software tools and consists of: (1) Conversion of data to the raster form, (2) register of TLS data in pairs in all possible combinations using the SURF (Speeded Up Robust Features) and FAST (Features from Accelerated Segment Test) algorithms, (3) the quality analysis of relative orientation of processed pairs, and (4) the final bundle adjustment. The following two problems, related to the influence of the spherical image, the orthoimage and the Mercator representation of the point cloud, are discussed: The correctness of the automatic tie points detection and distribution and the influence of the TLS position on the completeness of the registration process and the quality assessment. The majority of popular software applications use manually or semi-automatically determined corresponding points. However, the authors propose an original software tool to address the first issue, which automatically detects and matches corresponding points on each TLS raster representation, utilizing different algorithms (SURF and FAST). To address the second task, the authors present a series of analyses: The time of detection of characteristic points, the percentage of incorrectly detected points and adjusted characteristic points, the number of detected control and check points, the orientation accuracy of control and check points, and the distribution of control and check points. Selection of an appropriate method for the TLS point cloud conversion to the raster form and selection of an appropriate algorithm, considerably influence the completeness of the entire process, and the accuracy of data orientation. The results of the performed experiments show that fully automatic registration of the TLS point clouds in the raster forms is possible; however, it is not possible to propose one, universal form of the point cloud, because a priori knowledge concerning the scanner positions is required. If scanner stations are located close to one another in raster images or in spherical images, Mercator projections are recommended. In the case where fragments of the surface are measured under different angles from different distances and heights of the TLS, orthoimages are suggested.

2021 ◽  
Vol 10 (6) ◽  
pp. 380
Author(s):  
Václav Šafář ◽  
Markéta Potůčková ◽  
Jakub Karas ◽  
Jan Tlustý ◽  
Eva Štefanová ◽  
...  

The main challenge in the renewal and updating of the Cadastre of Real Estate of the Czech Republic is to achieve maximum efficiency but to retain the required accuracy of all points in the register. The paper discusses the possibility of using UAV photogrammetry and laser scanning for cadastral mapping in the Czech Republic. Point clouds from images and laser scans together with orthoimages were derived over twelve test areas. Control and check points were measured using geodetic methods (RTK-GNSS and total stations). The accuracy of the detailed survey based on UAV technologies was checked on hundreds of points, mainly building corners and fence foundations. The results show that the required accuracy of 0.14 m was achieved on more than 80% and 98% of points in the case of the image point clouds and orthoimages and the case of the LiDAR point cloud, respectively. Nevertheless, the methods lack completeness of the performed survey that must be supplied by geodetic measurements. The paper also provides a comparison of the costs connected to traditional and UAV-based cadastral mapping, and it addresses the necessary changes in the organisational and technological processes in order to utilise the UAV based technologies.


Author(s):  
S. Urban ◽  
M. Weinmann

The automatic and accurate registration of terrestrial laser scanning (TLS) data is a topic of great interest in the domains of city modeling, construction surveying or cultural heritage. While numerous of the most recent approaches focus on keypoint-based point cloud registration relying on forward-projected 2D keypoints detected in panoramic intensity images, little attention has been paid to the selection of appropriate keypoint detector-descriptor combinations. Instead, keypoints are commonly detected and described by applying well-known methods such as the Scale Invariant Feature Transform (SIFT) or Speeded-Up Robust Features (SURF). In this paper, we present a framework for evaluating the influence of different keypoint detector-descriptor combinations on the results of point cloud registration. For this purpose, we involve five different approaches for extracting local features from the panoramic intensity images and exploit the range information of putative feature correspondences in order to define bearing vectors which, in turn, may be exploited to transfer the task of point cloud registration from the object space to the observation space. With an extensive evaluation of our framework on a standard benchmark TLS dataset, we clearly demonstrate that replacing SIFT and SURF detectors and descriptors by more recent approaches significantly alleviates point cloud registration in terms of accuracy, efficiency and robustness.


Author(s):  
Yubin Liang ◽  
Yan Qiu ◽  
Tiejun Cui

Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.


Author(s):  
M. Vlachos ◽  
L. Berger ◽  
R. Mathelier ◽  
P. Agrafiotis ◽  
D. Skarlatos

<p><strong>Abstract.</strong> This paper presents an investigation as to whether and how the selection of the SfM-MVS software affects the 3D reconstruction of submerged archaeological sites. Specifically, Agisoft Photoscan, VisualSFM, SURE, 3D Zephyr and Reality Capture software were used and evaluated according to their performance in 3D reconstruction using specific metrics over the reconstructed underwater scenes. It must be clarified that the scope of this study is not to evaluate specific algorithms or steps that the various software use, but to evaluate the final results and specifically the generated 3D point clouds. To address the above research issues, a dataset from the ancient shipwreck, laying at 45 meters below sea level, is used. The dataset is composed of 19 images having very small camera to object distance (1 meter), and 42 images with higher camera to object distance (3 meters) images. Using a common bundle adjustment for all 61 images, a reference point cloud resulted from the lower dataset is used to compare it with the point clouds of the higher dataset generated using the different photogrammetric packages. Following that, a comparison regarding the number of total points, cloud to cloud distances, surface roughness, surface density and a combined 3D metric was done to evaluate and see which one performed the best.</p>


Author(s):  
Yubin Liang ◽  
Yan Qiu ◽  
Tiejun Cui

Co-registration of terrestrial laser scanner and digital camera has been an important topic of research, since reconstruction of visually appealing and measurable models of the scanned objects can be achieved by using both point clouds and digital images. This paper presents an approach for co-registration of terrestrial laser scanner and digital camera. A perspective intensity image of the point cloud is firstly generated by using the collinearity equation. Then corner points are extracted from the generated perspective intensity image and the camera image. The fundamental matrix F is then estimated using several interactively selected tie points and used to obtain more matches with RANSAC. The 3D coordinates of all the matched tie points are directly obtained or estimated using the least squares method. The robustness and effectiveness of the presented methodology is demonstrated by the experimental results. Methods presented in this work may also be used for automatic registration of terrestrial laser scanning point clouds.


2017 ◽  
Vol 66 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Przemysław Klapa ◽  
Bartosz Mitka

Abstract The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland’s base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej – Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The accuracy of determining the location of the various map contents has been estimated at 0.02-0.03 m. The map was developed in conformity with the applicable laws and regulations as well as with best practice requirements.


2021 ◽  
Vol 13 (10) ◽  
pp. 1905
Author(s):  
Biao Xiong ◽  
Weize Jiang ◽  
Dengke Li ◽  
Man Qi

Terrestrial laser scanning (TLS) is an important part of urban reconstruction and terrain surveying. In TLS applications, 4-point congruent set (4PCS) technology is widely used for the global registration of point clouds. However, TLS point clouds usually enjoy enormous data and uneven density. Obtaining the congruent set of tuples in a large point cloud scene can be challenging. To address this concern, we propose a registration method based on the voxel grid of the point cloud in this paper. First, we establish a voxel grid structure and index structure for the point cloud and eliminate uneven point cloud density. Then, based on the point cloud distribution in the voxel grid, keypoints are calculated to represent the entire point cloud. Fast query of voxel grids is used to restrict the selection of calculation points and filter out 4-point tuples on the same surface to reduce ambiguity in building registration. Finally, the voxel grid is used in our proposed approach to perform random queries of the array. Using different indoor and outdoor data to compare our proposed approach with other 4-point congruent set methods, according to the experimental results, in terms of registration efficiency, the proposed method is more than 50% higher than K4PCS and 78% higher than Super4PCS.


2021 ◽  
Vol 13 (18) ◽  
pp. 3564
Author(s):  
Ansgar Dreier ◽  
Jannik Janßen ◽  
Heiner Kuhlmann ◽  
Lasse Klingbeil

The use of UAV-based laser scanning systems is increasing due to the rapid development in sensor technology, especially in applications such as topographic surveys or forestry. One advantage of these multi-sensor systems is the possibility of direct georeferencing of the derived 3D point clouds in a global reference frame without additional information from Ground Control Points (GCPs). This paper addresses the quality analysis of direct georeferencing of a UAV-based laser scanning system focusing on the absolute accuracy and precision of the system. The system investigated is based on the RIEGL miniVUX-SYS and the evaluation uses the estimated point clouds compared to a reference point cloud from Terrestrial Laser Scanning (TLS) for two different study areas. The precision is estimated by multiple repetitions of the same measurement and the use of artificial objects, such as targets and tables, resulting in a standard deviation of <1.2 cm for the horizontal and vertical directions. The absolute accuracy is determined using a point-based evaluation, which results in the RMSE being <2 cm for the horizontal direction and <4 cm for the vertical direction, compared to the TLS reference. The results are consistent for the two different study areas with similar evaluation approaches but different flight planning and processing. In addition, the influence of different Global Navigation Satellite System (GNSS) master stations is investigated and no significant difference was found between Virtual Reference Stations (VRS) and a dedicated master station. Furthermore, to control the orientation of the point cloud, a parameter-based analysis using planes in object space was performed, which showed a good agreement with the reference within the noise level of the point cloud. The calculated quality parameters are all smaller than the manufacturer’s specifications and can be transferred to other multi-sensor systems.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


Sign in / Sign up

Export Citation Format

Share Document