scholarly journals Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP

2019 ◽  
Vol 9 (9) ◽  
pp. 1795 ◽  
Author(s):  
Kim ◽  
Kim ◽  
Hwang ◽  
Kim

Carbon Fiber Reinforced Plastics (CFRP) is a material developed for its high strength and light weight in a broad variety of industries including aerospace, automotive, and leisure. Due to the rapid molding cycle time, high-pressure resin transfer molding (HP-RTM) processes are prone to molding defects and susceptible to various process variables such as the resin injection rate, pressure and temperature in the mold, vacuum, end-gap, pressing force, and binder. In recent years, process monitoring technology with various sensors has been applied to stabilize the HP-RTM process and control process variables. The field-programmable gate array (FPGA) based embedded monitoring system proposed in this study enabled high-speed real-time signal processing with multiple sensors, namely pressure, temperature, and linear variable differential transformer (LVDT), and proved feasibility in the field. In the HP-RTM process, the impregnation and curing of the resin were predicted from the cavity pressure and temperature variations during the injection and curing stages. In addition, the thickness of the CFRP specimen was deduced from the change in the end-gap through the detection of the LVDT signal. Therefore, the causes of molding defects were analyzed through process monitoring and the influence of molding defects on the molding quality of CFRP was investigated.

2000 ◽  
Author(s):  
David Nielsen ◽  
Ranga Pitchumani

Abstract Variabilities in the preform structure in situ in the mold are an acknowledged challenge to effective permeation control in the Resin Transfer Molding (RTM) process. An intelligent model-based controller is developed which utilizes real-time virtual sensing of the permeability to derive optimal decisions on controlling the injection pressures at the mold inlet ports so as to track a desired flowfront progression during resin permeation. This model-based optimal controller employs a neural network-based predictor that models the flowfront progression, and a simulated annealing-based optimizer that optimizes the injection pressures used during actual control. Preform permeability is virtually sensed in real-time, based on the flowfront velocities and local pressure gradient estimations along the flowfront. Results are presented which illustrate the ability of the controller in accurately steering the flowfront for various fill scenarios and preform geometries.


Author(s):  
Kuang-Ting Hsiao

Resin Transfer Molding (RTM) is an advanced process to manufacture high quality thermoset polymeric composites. The quality of the composite depends on the resin infusion stage and the cure stage during the RTM process. The resin curing is a complex exothermic process which involves resin mechanical property evolution, resin volume shrinkage, thermal expansion, heat transfer, and chemical reaction. Since the fibers and resin have many differences in their physical properties, the composite cure stage inevitably introduces the undesired residual stress to the composite parts. As the residual stress could sometimes generate local matrix failure or degrade the performance of the composite, it is important to model and minimize the residual stress. This paper presents a model to predict the residual stress development during the composite cure process. By slightly disturbing the manufacturing parameters such as the mold heating cycle and the cure kinetics of polymer, the variations of residual stress development during the RTM process can be modeled and compared. A parametric uncertainty study of the residual stress development in the polymeric composite manufactured with RTM will be performed and discussed.


2011 ◽  
Vol 306-307 ◽  
pp. 844-847
Author(s):  
Quan Zhou Li ◽  
Xiao Qing Wu

A novel water soluble core material composed of alumina, quartz sand, kaolin, gypsum powder and the solution of binders was prepared. The influence of different mass concentration of Polyethylene Glycol (PEG) binder solution and sodium silicate compounded (SS) binders solution on water soluble performance and compressive strength of the core materials was investigated, respectively. The results show that the compressive strength and solubility rate of the core materials, with the concentration of 30% of SS binders solution, are 1.023MPa and 0.24g/s respectively, which is satisfied for the requirements of Resin Transfer Molding (RTM) process completely.


2018 ◽  
Vol 28 (4) ◽  
pp. 365-382 ◽  
Author(s):  
Beom Jeong Han ◽  
Yong Chai Jeong ◽  
Churl Min Kim ◽  
Roh Won Kim ◽  
Myungchang Kang

2014 ◽  
Vol 27 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Jong-Moo Ahn ◽  
Dong-Gi Seong ◽  
Won-Oh Lee ◽  
Moon-Kwang Um ◽  
Jin-Ho Choi

2017 ◽  
Vol 52 (3) ◽  
pp. 313-330 ◽  
Author(s):  
Mathieu Imbert ◽  
Emmanuelle Abisset-Chavanne ◽  
Sébastien Comas-Cardona ◽  
David Prono

Simulation tools are required to ease the determination of the optimal process parameters and injection strategy of short cycle resin transfer molding (RTM). The developed finite element method/volume of fluid numerical tool aims to simulate accurately and efficiently the flow of a reactive resin mixed on-line in a dual-scale porous reinforcement during the resin transfer molding process. A macroscopic mesh deals with the flow inside of the channels of the reinforcement while a representative microstructure associated to each element allows reproducing both the unsaturated area and the intra-tow resin storage. Degree of cure, temperature, and viscosity are updated and transported at each time step, both in the channels and in the tows of the fabric using advection equations and sink and source terms for inter-scale exchanges. A new flexible approach based on the textile’s geometry defines automatically the representative microstructure associated to each macroscopic element depending on its size and shape. Additionally, tow saturation is simplified under the assumption of high-speed injection to a sum of one-dimensional transverse tow saturation problems, which reduces the computational cost of the simulation. Convergence tests have highlighted the ability for the simulation tool to treat with an equivalent degree of accuracy a saturation problem with elements exhibiting element sizes three times smaller to three times bigger than the length of the unsaturated area. Significant computation time reductions have also been noticed when large elements were used. Finally thermo-chemo-rheological coupled simulations have been conducted, highlighting the importance of taking the dual-scale effect into account when simulating reactive injections with on-line mixing.


Author(s):  
Kiran M. D’Silva ◽  
Su-Seng Pang ◽  
Kurt C. Schulz

Abstract Low mold filling time and improper fiber wetting are the main problems faced by the manufacturers applying the Resin Transfer Molding (RTM) process. The objective of this work was to minimize these problems and to study the effect of weirs on the RTM process. A mold was designed such that the lower mold plate contains two weirs, one at the resin inlet port and the other at the outlet port. The purpose of adding the weirs is to provide a continuous inlet stream near the resin inlet port and to cause backpressure near the outlet port to induce complete mold filling. Laminated plates were prepared using glass fibers and epoxy resin (combination of EPON resin-862 and curing agent W). The test parameters investigated, such as void contents, dry spots and mold filling time, were compared with those of samples that were prepared without the use of weirs. It was found that the presence of weirs resulted in significant elimination of dry spots, minimization of void contents and a reduction in mold filling time. As a result, the cost required to manufacture composite parts can be reduced by the use of weirs. In addition to the experimental investigation, a computer simulation (using LCMFLOT software) of resin flow inside the mold cavity was conducted. Many simulations were run in order to optimize the height and shape of the weir. Rectangular weirs of height 2.54 mm showed minimum mold fill time. It was found that the results obtained from the experimental work and flow simulations are in good agreement. Based on this work, it is evident that complex parts can be produced in less cycle time if weirs are positioned at appropriate locations.


Sign in / Sign up

Export Citation Format

Share Document