scholarly journals Energy Demand and Supply Simultaneous Optimization to Design a Nearly Zero-Energy House

2019 ◽  
Vol 9 (11) ◽  
pp. 2261 ◽  
Author(s):  
Maria Ferrara ◽  
Federico Prunotto ◽  
Andrea Rolfo ◽  
Enrico Fabrizio

The effective design of nearly zero-energy buildings depends on a large set of interdependent variables, which affect both energy demand and supply. Considering them simultaneously is fundamental when searching for optimal design of nearly zero-energy buildings, as encouraged by the EU in the second recast of the Energy Performance of Building Directive (EPBD). This paper presents the application of the new energy demand and supply simultaneous optimization (EDeSSOpt) methodology to optimize the design of a single-family house in the Italian context. Both primary energy optimization and financial optimization are carried out in the context of European regulations. Robustness of the resulting optimal solution is studied through analysis of optimum neighborhoods. The resulting cost-optimized solution relies on a moderately insulated envelope, a highly efficient system, and 34% of coverage from renewables. The energy-optimized solution requires a higher level of insulation and a higher coverage from renewables, demonstrating that there is still a gap between energy and cost optimums. Beyond the results, integrated optimization by means of EDeSSOpt is demonstrated to better minimize cost functions while improving the robustness of results.

Author(s):  
Patxi Hernandez ◽  
Paul Kenny

Building energy performance regulations and standards around the world are evolving aiming to reduce the energy use in buildings. As we move towards zero energy buildings, the embodied energy of construction materials and energy systems becomes more important, as it represents a high percentage of the overall life cycle energy use of a building. However, this issue is still ignored by many regulations and certification methods, as happens with the European Energy Performance of Buildings Directive (EPBD), which focuses on the energy used in operation. This paper analyses a typical house designed to comply with Irish building regulations, calculating its energy use for heating and how water with the Irish national calculation tool, which uses a methodology in line with the EPBD. A range of measures to reduce the energy performance in use of this typical house are proposed, calculating the reduced energy demand and moving towards a zero energy demand building. A life-cycle approach is added to the analysis, taking into account the differential embodied energy of the implemented measures in relation to the typical house base-case, annualizing the differential embodied energy and re-calculating the overall energy use. The paper discusses how a simplified approach for accounting embodied energy of materials could be useful in a goal to achieve the lowest life-cycle energy use in buildings, and concludes with a note on how accounting for embodied energy is a key element when moving towards zero energy buildings.


2013 ◽  
Vol 4 (2) ◽  
pp. 163-169
Author(s):  
Zs. Szalay ◽  
T. Csoknyai

Abstract The recast of the Energy Performance Building Directive contains a new article about the need to increase the number of buildings which go beyond current national requirements, and to draw up national plans for increasing the number of nearly zero-energy buildings (nZEB) with the final target that by 2020 all new buildings shall be nearly-zero energy. Nearly zero-energy buildings are buildings with a very high energy performance, where the remaining low energy demand can be supplied to a significant extent by renewable energy. In this paper, a detached house complying with the proposed Hungarian nZEB requirements is analysed. The life cycle cost and life cycle environmental impacts of the building are assessed for various building service systems to optimise the building design.


Author(s):  
P. Deepak ◽  
Z. Anees Hussain

Current energy policy and climate mitigation goals require distinct reductions of the primary energy demand in the building sector. The existing building stock poses challenge since clear-cut technical and economical retrofit strategies for different types of existing buildings are still not established. The goal of the study is to identify such retrofit strategies to achieve optimal cost levels and to assess costs and benefits of nearly zero energy buildings (nZEB). Firstly building types are defined by covering single-family houses, multi-family houses, office buildings and school buildings. Secondly, a large set of generic energy efficiency measures are described, covering seven strategic fields, namely building envelope measures, heating and hot water supply technologies and fuel choice, ventilation and lighting systems, electricity and district heat mixes. This covers the usage of smart home appliances, eco-friendly building ventilation system. Thirdly, energy performance is calculated based on technical and physical characteristics and using building energy balance software. Fourthly, investment costs and life cycle costs are established based on unitary costs of building elements and building technologies. Cost-effectiveness is determined based on he net present value method which is compared to the annuity method for a couple of cases. The integration of smart grid and IoT(Internet of Things) is a new concept for conserving more.


2016 ◽  
Vol 820 ◽  
pp. 146-151
Author(s):  
Peter Buday ◽  
Rastislav Ingeli

Rising living standards have led to a significant increase in building energy consumption over the past few decades. Therefore, along with sustainability requirements, it is essential to establish an effective and precise energy demand model for new buildings. In principle, energy demand in buildings is very important plan to pre-calculate and that is one of the reasons why it is supposed to be precalculated for most of the sustainable buildings. Net Zero-Energy Buildings (NZEBs) have received increased attention in recent years as a result of constant concerns about energy supply constraints, decreasing energy resources, increasing energy costs and the rising impact of greenhouse gases on world climate. Promoting whole building strategies that employ passive measures together with energy efficient systems and technologies using renewable energy became a European political strategy following the publication of the Energy Performance of Buildings Directive recast in May 2010 by the European Parliament and Council. In Net Zero-Energy Buildings (NZEB) is necessary to calculate all factors that influence on energy need for heating. However what is still underestimated is the consideration that the energy performance of any building component is the result not only of its thermophysical properties but also of how are all the components installed and connected to each other. Thermal bridging in buildings can contribute to a multitude of problems. One of the details that create thermal bridges is balcony. This paper is focused to calculate Balcony systems (isokorb) impact on energy need for heating and economic valuation of balcony systems in residential building.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1541 ◽  
Author(s):  
Małgorzata Fedorczak-Cisak ◽  
Anna Kotowicz ◽  
Elżbieta Radziszewska-Zielina ◽  
Bartłomiej Sroka ◽  
Tadeusz Tatara ◽  
...  

The Directive 2010/31/EU on the energy performance of buildings has introduced the standard of “nearly zero-energy buildings” (NZEBs). European requirements place the obligation to reduce energy consumption on all European Union Member States, particularly in sectors with significant energy consumption indicators. Construction is one such sector, as it is responsible for around 40% of overall energy consumption. Apart from a building’s mass and its material and installation solutions, its energy consumption is also affected by its placement relative to other buildings. A proper urban layout can also lead to a reduction in project development and occupancy costs. The goal of this article is to present a method of optimising single-family house complexes that takes elements such as direct construction costs, construction site organisation, urban layout and occupancy costs into consideration in the context of sustainability. Its authors have analysed different proposals of the placement of 40 NZEBs relative to each other and have carried out a multi-criteria analysis of the complex, determining optimal solutions that are compliant with the precepts of sustainability. The results indicated that the layout composed of semi-detached houses scored the highest among the proposed layouts under the parameter weights set by the developer. This layout also scored the highest when parameter weights were uniformly distributed during a test simulation.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3252 ◽  
Author(s):  
Xiaolong Xu ◽  
Guohui Feng ◽  
Dandan Chi ◽  
Ming Liu ◽  
Baoyue Dou

Optimizing key parameters with energy consumption as the control target can minimize the heating and cooling needs of buildings. In this paper we focus on the optimization of performance parameters design and the prediction of energy consumption for nearly Zero Energy Buildings (nZEB). The optimal combination of various performance parameters and the Energy Saving Ratio (ESR)are studied by using a large volume of simulation data. Artificial neural networks (ANNs) are applied for the prediction of annual electrical energy consumption in a nearly Zero Energy Building designs located in Shenyang (China). The data of the energy demand for our test is obtained by using building simulation techniques. The results demonstrate that the heating energy demand for our test nearly Zero Energy Building is 17.42 KW·h/(m2·a). The Energy Saving Ratio of window-to-wall ratios optimization is the most obvious, followed by thermal performance parameters of the window, and finally the insulation thickness. The maximum relative error of building energy consumption prediction is 6.46% when using the artificial neural network model to predict energy consumption. The establishment of this prediction method enables architects to easily and accurately obtain the energy consumption of buildings during the design phase.


2021 ◽  
Vol 14 (1) ◽  
pp. 65
Author(s):  
Muhammad Usman ◽  
Georg Frey

The comprehensive approach for a building envelope design involves building performance simulations, which are time-consuming and require knowledge of complicated processes. In addition, climate variation makes the selection of these parameters more complex. The paper aims to establish guidelines for determining a single-family household’s unique optimal passive design in various climate zones worldwide. For this purpose, a bi-objective optimization is performed for twenty-four locations in twenty climates by coupling TRNSYS and a non-dominated sorting genetic algorithm (NSGA-III) using the Python program. The optimization process generates Pareto fronts of thermal load and investment cost to identify the optimum design options for the insulation level of the envelope, window aperture for passive cooling, window-to-wall ratio (WWR), shading fraction, radiation-based shading control, and building orientation. The goal is to find a feasible trade-off between thermal energy demand and the cost of thermal insulation. This is achieved using multi-criteria decision making (MCDM) through criteria importance using intercriteria correlation (CRITIC) and the technique for order preference by similarity to ideal solution (TOPSIS). The results demonstrate that an optimal envelope design remarkably improves the thermal load compared to the base case of previous envelope design practices. However, the weather conditions strongly influence the design parameters. The research findings set a benchmark for energy-efficient household envelopes in the investigated climates. The optimal solution sets also provide a criterion for selecting the ranges of envelope design parameters according to the space heating and cooling demands of the climate zone.


Author(s):  
Elisa Peñalvo-López ◽  
Javier Cárcel-Carrasco ◽  
Manuel Valcuende-Paya ◽  
María Carmen Carnero-Moya

The construction segment is an important economic sector in Europe, representing 9% of European gross domestic product (GDP) and providing approximately 18 million direct jobs. Construction activities that include renovation work and energy retrofits add almost twice as much value as the construction of new buildings, and small and medium-sized enterprises (SMEs) contribute more than 70% of the value added in the EU building sector. Furthermore, European legislation obliges member states to establish minimum energy efficiency requirements for buildings to achieve optimum levels of costs versus energy demand reduction. These requirements are reviewed every five years and represent categories of buildings based on their energy levels (demand and generation). This chapter analyzes the legislation associated to nearly zero energy buildings (nZEB) in Spain in order to identify the factors that will leverage their massive implementation.


Author(s):  
Elisa Peñalvo-López ◽  
Javier Cárcel-Carrasco ◽  
Manuel Valcuende-Paya ◽  
María Carmen Carnero-Moya

The construction segment is an important economic sector in Europe, representing 9% of European gross domestic product (GDP) and providing approximately 18 million direct jobs. Construction activities that include renovation work and energy retrofits add almost twice as much value as the construction of new buildings, and small and medium-sized enterprises (SMEs) contribute more than 70% of the value added in the EU building sector. Furthermore, European legislation obliges member states to establish minimum energy efficiency requirements for buildings to achieve optimum levels of costs versus energy demand reduction. These requirements are reviewed every five years and represent categories of buildings based on their energy levels (demand and generation). This chapter analyzes the legislation associated to nearly zero energy buildings (nZEB) in Spain in order to identify the factors that will leverage their massive implementation.


Sign in / Sign up

Export Citation Format

Share Document