scholarly journals Tracking the Movements of Juvenile Chinook Salmon using an Autonomous Underwater Vehicle under Payload Control

2019 ◽  
Vol 9 (12) ◽  
pp. 2516 ◽  
Author(s):  
John H. Eiler ◽  
Thomas M. Grothues ◽  
Joseph A. Dobarro ◽  
Rahul Shome

An autonomous underwater vehicle (AUV) under payload control (PC) was used to map the movements of juvenile Chinook salmon (Oncorhynchus tshawytscha) tagged with acoustic transmitters. After detecting a tag, the AUV deviated from its pre-programmed route and performed a maneuver designed to enhance the location estimate of the fish and to move closer to collect proximal environmental data. Nineteen fish were released into marine waters of southeastern Alaska. Seven missions with concurrent AUV and vessel-based surveys were conducted with two to nine fish present in the area per mission. The AUV was able to repeatedly detect and estimate the location of the fish, even when multiple individuals were present. Although less effective at detecting the fish, location estimates from the vessel-based surveys helped verify the veracity of the AUV data. All of the fish left the area within 48 h of release. Most fish exhibited localized movements (milling behavior) before leaving the area. Dispersal rates calculated for the fish suggest that error associated with the location estimates was minimal. The average movement rate was 0.62 body length per second and was comparable to marine movement rates reported for other Chinook salmon stocks. These results suggest that AUV-based payload control can provide an effective method for mapping the movements of marine fish.

Author(s):  
Nicole M. Aha ◽  
Peter B. Moyle ◽  
Nann A. Fangue ◽  
Andrew L. Rypel ◽  
John R. Durand

AbstractLoss of estuarine and coastal habitats worldwide has reduced nursery habitat and function for diverse fishes, including juvenile Chinook salmon (Oncorhynchus tshawytscha). Underutilized off-channel habitats such as flooded rice fields and managed ponds present opportunities for improving rearing conditions and increasing habitat diversity along migratory corridors. While experiments in rice fields have shown enhanced growth rates of juvenile fishes, managed ponds are less studied. To evaluate the potential of these ponds as a nursery habitat, juvenile Chinook salmon (~ 2.8 g, 63 mm FL) were reared in cages in four contrasting locations within Suisun Marsh, a large wetland in the San Francisco Estuary. The locations included a natural tidal slough, a leveed tidal slough, and the inlet and outlet of a tidally muted managed pond established for waterfowl hunting. Fish growth rates differed significantly among locations, with the fastest growth occurring near the outlet in the managed pond. High zooplankton biomass at the managed pond outlet was the best correlate of salmon growth. Water temperatures in the managed pond were also cooler and less variable compared to sloughs, reducing thermal stress. The stress of low dissolved oxygen concentrations within the managed pond was likely mediated by high concentrations of zooplankton and favorable temperatures. Our findings suggest that muted tidal habitats in the San Francisco Estuary and elsewhere could be managed to promote growth and survival of juvenile salmon and other native fishes.


1997 ◽  
Vol 54 (4) ◽  
pp. 757-764 ◽  
Author(s):  
M G Mesa ◽  
J J Warren

To assess the effects of gas bubble trauma (GBT) on the predator avoidance ability of juvenile chinook salmon (Oncorhynchus tshawytscha), we created groups of fish that differed in prevalence and severity of gas emboli in their lateral lines, fins, and gills by exposing them to 112% total dissolved gas (TDG) for 13 days, 120% TDG for 8 h, or 130% TDG for 3.5 h. We subjected exposed and unexposed control fish simultaneously to predation by northern squawfish (Ptychocheilus oregonensis) in water of normal gas saturation in 6, 18, and 10 tests using prey exposed to 112, 120, and 130% TDG, respectively. Only fish exposed to 130% TDG showed a significant increase in vulnerability to predation. The signs of GBT exhibited by fish sampled just prior to predator exposure were generally more severe in fish exposed to 130% TDG, which had the most extensive occlusion of the lateral line and gill filaments with gas emboli. Fish exposed to 112% TDG had the most severe signs of GBT in the fins. Our results suggest that fish showing GBT signs similar to those of our fish exposed to 130% TDG, regardless of their precise exposure history, may be more vulnerable to predation.


1983 ◽  
Vol 40 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Karl K. English

Juvenile chinook salmon, Oncorhynchus tshawytscha, were raised in 90-m3 mesh enclosures in Saanich Inlet, B.C. The enclosures permitted ample water and zooplankton circulation while retaining 5–6 g juvenile salmon. Mean growth rate was 1.8% wet body weight/d over 6 wk. Weekly growth rates ranged from 3.9%/d while food was abundant, to −0.5%/d when food was scarce. Zooplankton concentration inside and outside enclosures without fish were not significantly different. Organisms associated with the sides of the enclosures (non-pelagic) were not a major contributor to the growth of the juvenile chinook. There was a strong relationship between the fish growth rates and the abundance of 1.4- to 4.5-mm zooplankton. Rates of successful search varied directly with the size and inherent contrast of a prey item. The minimum rate of successful search was 2.3 m3/h for salmon feeding on 1.4- to 4.5-mm zooplankton. This rate of successful search, while far greater than previously suspected, is still within the visual capabilities of the juvenile salmon. The enclosed salmon grew rapidly on zooplankton concentrations that were 1/1000 of those required to sustain similar growth rates in tank experiments.Key words: predator–prey relationship, planktivorous salmonid, marine, "in situ" enclosures, search efficiency


Sign in / Sign up

Export Citation Format

Share Document