scholarly journals State of Charge Estimation of a Lithium Ion Battery Based on Adaptive Kalman Filter Method for an Equivalent Circuit Model

2019 ◽  
Vol 9 (13) ◽  
pp. 2765 ◽  
Author(s):  
Xiao Ma ◽  
Danfeng Qiu ◽  
Qing Tao ◽  
Daiyin Zhu

Due to its accuracy, simplicity, and other advantages, the Kalman filter method is one of the common algorithms to estimate the state-of-charge (SOC) of batteries. However, this method still has its shortcomings. The Kalman filter method is an algorithm designed for linear systems and requires precise mathematical models. Lithium-ion batteries are not linear systems, so the establishment of the battery equivalent circuit model (ECM) is necessary for SOC estimation. In this paper, an adaptive Kalman filter method and the battery Thevenin equivalent circuit are combined to estimate the SOC of an electric vehicle power battery dynamically. Firstly, the equivalent circuit model is studied, and the battery model suitable for SOC estimation is established. Then, the parameters of the corresponding battery charge and the discharge experimental detection model are designed. Finally, the adaptive Kalman filter method is applied to the model in the unknown interference noise environment and is also adopted to estimate the SOC of the battery online. The simulation results show that the proposed method can correct the SOC estimation error caused by the model error in real time. The estimation accuracy of the proposed method is higher than that of the Kalman filter method. The adaptive Kalman filter method also has a correction effect on the initial value error, which is suitable for online SOC estimation of power batteries. The experiment under the BBDST (Beijing Bus Dynamic Stress Test) working condition fully proves that the proposed SOC estimation algorithm can hold the satisfactory accuracy even in complex situations.

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1012 ◽  
Author(s):  
Yidan Xu ◽  
Minghui Hu ◽  
Chunyun Fu ◽  
Kaibin Cao ◽  
Zhong Su ◽  
...  

Accurate estimation of battery state of charge (SOC) is of great significance for extending battery life, improving battery utilization, and ensuring battery safety. Aiming to improve the accuracy of SOC estimation, in this paper, a temperature-dependent second-order RC equivalent circuit model is established for lithium-ion batteries, based on the battery electrical characteristics at different ambient temperatures. Then, a dual Kalman filter algorithm is proposed to estimate the battery SOC, using the proposed equivalent circuit model. The SOC estimation results are compared with the SOC value obtained from experiments, and the estimation errors under different temperature conditions are found to be within ±0.4%. These results prove that the proposed SOC estimation algorithm, based on a temperature-dependent second-order RC equivalent circuit model, provides accurate SOC estimation performance with high temperature adaptability and robustness.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1412
Author(s):  
Hao Wang ◽  
Yanping Zheng ◽  
Yang Yu

In order to improve the estimation accuracy of the state of charge (SOC) of electric vehicle power batteries, a dual Kalman filter method based on the online identification of model parameters is proposed to estimate the state of charge in lithium-ion batteries. Here, we build the first-order equivalent circuit model of lithium-ion batteries and derive its online identification model based on extended Kalman (EKF). Considering that the noise value in the EKF algorithm is difficult to select through experiments to achieve the best filtering effect, this paper combines an improved particle swarm optimization algorithm (IPSO) with EKF to realize online model parameter identification. At the same time, the EKF filtering method derived from the state space equation is also used in SOC estimation. It constitutes a dual Kalman filter method for online identification of model parameters and SOC estimation. The experimental and simulation results show that the IPSO–EKF algorithm can adaptively adjust the noise value according to the complex operating conditions of electric vehicles. Compared with the EKF algorithm, our algorithm can identify battery model parameters more accurately. The dual Kalman filter method composed of the IPSO–EKF algorithm and EKF applied to SOC estimation achieved a higher accuracy in the final algorithm verification.


Author(s):  
Xiaowei Zhao ◽  
Guoyu Zhang ◽  
Lin Yang

A task that has to be solved for the application of batteries in vehicles with an electric drive train is the determination of the actual state-of-health (SOH) and state-of-charge (SOC) of the battery cells. In this paper, an on board strategy for estimating SOC and SOH of Li-ion batteries is proposed. The equivalent circuit model is used for both SOC and SOH estimations. In SOH algorithm, the estimated value of battery capacity not only reflects the aging degree of battery pack, but also provides information for SOC estimation. Meanwhile, the extended Kaiman filtering is used in SOC estimation. Because the performance of the equivalent circuit model will be better at small currents than at high currents, extended Kaiman filtering is substituted by Ampere-Hour counting when the absolute value of current is greater than a calibration value. The Digatron battery tester was used to evaluate the proposed estimation method, and results show that the estimation method has high accuracy and efficiency at ordinary temperatures.


Sign in / Sign up

Export Citation Format

Share Document