scholarly journals Secure On-Off Transmission in UAV Relay-Assisted mmWave Networks

2019 ◽  
Vol 9 (19) ◽  
pp. 4138
Author(s):  
Ruiqian Ma ◽  
Weiwei Yang ◽  
Yu Zhang ◽  
Songqing Wang

This paper investigates secure transmission in unmanned aerial vehicle (UAV) relay-assisted millimeter wave (mmWave) networks, where the selected UAV relay performs secure transmission in both the on-off and non-on-off schemes. Meanwhile, there are multiple eavesdroppers randomly distributed on the ground and attempting to wiretap the transmission. Leveraging the air-to-ground channel model and the tools of stochastic geometry, the novel expressions of transmit probability (TP) and secrecy outage probability (SOP) are derived in both the on-off and non-on-off transmission schemes with perfect beam alignment. The secrecy performance improvement is demonstrated in the on-off transmission scheme, and we find that there exists an optimal altitude of UAV relays to achieve the best TP. In addition, due to the limitations of UAV carriers, such as its low computational capacity and high mobility, the perfect beam alignment is difficult to achieve in the mmWave networks aided by UAV relays, and the effect of beam alignment error on the secrecy performance is investigated in the considered networks. Analyzing the numerical and simulation results, we find that the SOP will not have obvious deterioration when the beam alignment error is relatively small, and the SOP can be improved by using the antennas with a large number of elements. However, in high beam alignment error regime, the antenna arrays with a smaller number of elements will provide the better SOP.

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 427 ◽  
Author(s):  
Yi Song ◽  
Weiwei Yang ◽  
Zhongwu Xiang ◽  
Yiliang Liu ◽  
Yueming Cai

Millimeter-wave (mmWave) communication is one of the key enabling technologies for fifth generation (5G) mobile networks. In this paper, we study the problem of secure communication in a mmWave wiretap network, where directional beamforming and link blockages are taken into account. For the secure transmission in the presence of spatially random eavesdroppers, an adaptive transmission scheme is adopted, for which sector secrecy guard zone and artificial noise (AN) are employed to enhance secrecy performance. When there exists no eavesdroppers within the sector secrecy guard zone, the transmitter only transmits information-bearing signal, and, conversely, AN along with information-bearing signal are transmitted. The closed-form expressions for secrecy outage probability (SOP), connection outage probability (COP) and secrecy throughput are derived under stochastic geometry. Then, we evaluate the effect of the sector secrecy guard zone and AN on the secrecy performance. Our results reveal that the application of the sector secrecy guard zone and AN can significantly improve the security of the system, and blockages also can be utilized to improve secrecy performance. An easy choice of transmit power and power allocation factor is provided for achieving higher secrecy throughput. Furthermore, increasing the density of eavesdroppers not always deteriorates the secrecy performance due to the use of the sector secrecy guard zone and AN.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaohui Shang ◽  
Aijun Liu ◽  
Yida Wang ◽  
Qing Xie ◽  
Yong Wang

In this paper, the secure uplink transmission scenario in Internet of Things (IoT) applications is investigated, where one of multiple sensors communicates with the controller aided by the cooperative relay. Firstly, by considering the direct link, an energy-efficient transmission scheme (EET) is proposed, which can be suitable for the resource-constrained devices and applications in IoT communication. Moreover, the secrecy outage probability (SOP) and secure energy efficiency (SEE) of different transmission strategies are derived, which contributes to the design of energy-efficient secure transmission. Finally, simulation results demonstrate that EET outperforms other transmission protocols in terms of SEE in most situations. To improve the secrecy performance and energy efficiency of the IoT deployment, EET can be adopted as an effective additional strategy in practical applications.


2021 ◽  
Author(s):  
Shu Xu ◽  
Chen Liu ◽  
Hong Wang ◽  
Mujun Qian ◽  
Wenfeng Sun

Abstract Secure transmission is essential for future non-orthogonal multiple access (NOMA) system. This paper investigates relay-antenna selection (RAS) to enhance physical-layer security (PLS) of cooperative NOMA system in the presence of an eavesdropper, where multiple antennas are deployed at the relays, the users, and the eavesdropper. In order to reduce expense on radio frequency (RF) chains, selection combining (SC) is employed at both the relays and the users, whilst the eavesdropper employs either maximal-ratio combining (MRC) or selection combining (SC) to process the received signals. Under the condition that the channel state information (CSI) of the eavesdropping channel is available or unavailable, two e↵ective relay-antenna selection schemes are proposed. Additionally, the closed-form expressions of secrecy outage probability (SOP) are derived for the proposed relay-antenna selection schemes. In order to gain more deep insights on the derived results, the asymptotic performance of the derived SOP is analyzed. In simulations, it is demonstrated that the theoretical results match well with the simulation results and the SOP of the proposed schemes is less than that of the conventional orthogonal multiple access (OMA) scheme obviously.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dan Deng ◽  
Chao Li ◽  
Lisheng Fan ◽  
Xin Liu ◽  
Fasheng Zhou

This paper studies the impacts of antenna selection algorithms in decode-and-forward (DF) cooperative nonorthogonal multiple access (NOMA) networks, where the secure information from the relay can be overheard by an eavesdropper in the networks. In order to ensure the secure transmission, an optimal antenna selection algorithm is proposed to choose one best relay’s antenna to assist the secure transmission. We study the impact of antenna selection on the system secure communication through deriving the analytical expression of the secrecy outage probability along with the asymptotic expression in the high regime of signal-to-noise ratio (SNR) and main-to-eavesdropper ratio (MER). From the analytical and asymptotic expressions, we find that the system secure performance is highly dependent on the system parameters such as the number of antennas at the relay, SNR, and MER. In particular, the secrecy diversity order of the system is equal to the antenna number, when the interference from the second user is limited.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Qiao Liu ◽  
Guang Gong ◽  
Yong Wang ◽  
Hui Li

Security issue has been considered as one of the most pivotal aspects for the fifth-generation mobile network (5G) due to the increasing demands of security service as well as the growing occurrence of security threat. In this paper, instead of focusing on the security architecture in the upper layer, we investigate the secure transmission for a basic channel model in a heterogeneous network, that is, two-way relay channels. By exploiting the properties of the transmission medium in the physical layer, we propose a novel secure scheme for the aforementioned channel mode. With precoding design, the proposed scheme is able to achieve a high transmission efficiency as well as security. Two different approaches have been introduced: information theoretical approach and physical layer encryption approach. We show that our scheme is secure under three different adversarial models: (1) untrusted relay attack model, (2) trusted relay with eavesdropper attack model, and (3) untrusted relay with eavesdroppers attack model. We also derive the secrecy capacity of the two different approaches under the three attacks. Finally, we conduct three simulations of our proposed scheme. The simulation results agree with the theoretical analysis illustrating that our proposed scheme could achieve a better performance than the existing schemes.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093346
Author(s):  
Xin Fan ◽  
Yan Huo

As Internet of Things (IoT) has boomed in recent years, many security issues have also been exposed. Focusing on physical layer security in wireless Internet of Things network communication, a series of security methods have been widely studied. Nevertheless, cooperative jamming methods in physical layer security to fight against collusive eavesdroppers have not been thoroughly studied yet. In this article, we study a cooperative-jamming-based physical layer secure transmission scheme for Internet of Things wireless networks in the presence of collusive eavesdroppers. We design a cooperative jamming strategy without knowing the channel state information of eavesdroppers. Considering the cooperation of multiple nodes with multiple antennas, this strategy can maximize the signal-to-interference-plus-noise ratio at an actuator (legitimate receiver). Meanwhile, the generated cooperative jamming signals can reduce the signal-to-interference-plus-noise ratio at eavesdroppers. To explore the theoretical security performance of our strategy, we perform a secrecy outage probability analysis and an asymptotic analysis. In the cases of cooperative jamming and without cooperative jamming, the closed-form expressions of the secrecy outage probability are deduced, and the influence of system parameters on the secrecy outage probability becomes more intuitive through a strict mathematical asymptotic behavior analysis. In addition, considering the energy limitation of Internet of Things devices, we propose a power allocation algorithm to minimize the total transmission power given the security requirements. The numerical results show the effectiveness of our schemes and are consistent with the theoretical analysis.


2019 ◽  
Vol 9 (21) ◽  
pp. 4506
Author(s):  
Chen Wei ◽  
Wendong Yang ◽  
Yueming Cai

This paper investigates the secure transmission for buffer-aided relay networks in the Internet of Things (IoT) in the presence of multiple passive eavesdroppers. For security enhancement, we adopt the max-link relay selection policy and propose three secure transmission schemes: (1) non-jamming (NJ); (2) source cooperative jamming (SCJ); and (3) source cooperative jamming with optimal power allocation (SCJ-OPA). Moreover, to analyze the secrecy performance comprehensively, two eavesdropping scenarios, i.e., non-colluding eavesdroppers (NCE) and colluding eavesdroppers (CE) are considered. Based on this, by modeling the dynamic buffer state transition as a Markov chain, we derive the exact closed-form expressions of the secrecy outage probability, the average secrecy throughput, and the end-to-end delay for each schemes. The analytical analysis and simulation shows that the SCJ-OPA scheme achieves similar performance as the NJ scheme when the total transmit power is small. On the other hand, when the transmit power is high, the performance achieved by SCJ-OPA is similar to that of SCJ. Thereby, the SCJ-OPA scheme can achieve better performance across the entire total transmit power, which makes up the defects of NJ and SCJ exactly.


2020 ◽  
Vol 10 (5) ◽  
pp. 1840 ◽  
Author(s):  
Zhihui Shang ◽  
Tao Zhang ◽  
Yueming Cai ◽  
Weiwei Yang ◽  
Hao Wu ◽  
...  

This paper studies the secure transmission in the dual-hop cognitive wiretap networks, where the secondary transmitter (Alice) aims to transmit confidential information to the secondary receiver (Bob) in the face of a multi-antenna relay (Relay), while the malicious eavesdropper (Eve) is used to eavesdrop the confidential information from Alice and Relay. To improve security, we design two transmission schemes, namely maximal-ratio combining/maximal-ratio transmission-selection combining (MRC/MRT-SC) with half-duplex (HD) receiver and maximal-ratio combining-zero forcing beamforming/maximal-ratio transmission-selection combining-zero forcing beamforming (MRC-ZFB/MRT-SC-ZFB) with full-duplex (FD) receiver. To evaluate the secrecy performance obtained from the proposed schemes comprehensively, the new closed-form and simple asymptotic expressions for the secrecy outage probability (SOP) and secrecy throughput (ST) of our considered networks with MRC-ZFB/MRT-SC-ZFB and MRC/MRT-SC schemes are derived, respectively. Thus, we explore the effect of various schemes on system secrecy performance in terms of SOP and ST. Analytical results and numerical simulations demonstrate that MRC-ZFB/MRT-SC-ZFB achieves better performance in the two proposed schemes. In particular, we show that the FD receiver plays a crucial role in designing the cognitive wiretap networks for protecting the legitimate link against attack from the malicious eavesdropping.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shaddrack Yaw Nusenu

In multicast communication scenario, the desired users are decomposed into M groups to receive private M useful data from the transmitter, while eavesdroppers (Eves) group tries to intercept. Since wireless security system consists of authentication and secure transmission, we propose directional modulation (DM) artificial noise (AN) matrix-aided Costas sequence (CS) matrix frequency diverse array (FDA) in multicast precoding systems in this paper. Specifically, we utilize the CS matrix for desired groups authentication (i.e., group identity), and it is shared via a low-speed forward link in advance. Next, we design AN matrix-aided FDA to offer robust antieavesdropping method based on leakage concept. Furthermore, we devise secrecy metrics, namely, secrecy outage probability (SOP), asymptotic Eve’s detectability error probability, and average useful data leakage rate, based on the scenario where Eve’s instantaneous channel state information (CSI) is unavailable. In addition, we numerically analyze the proposed energy beamforming focusing and evaluate the secrecy energy efficiency. Via simulation results, the proposed scheme gives important insights into how to design and measure secrecy performances in multicast scenarios.


2020 ◽  
Author(s):  
Bin Qiu ◽  
Chao Jing

Abstract Vehicular communication has emerged as a supporting technique for improving road traffic safety and efficiency in the intelligent transportation system (ITS). However, the wireless vehicular communication links may suffer from an eavesdropping threat due to the wireless broadcasting nature and high-mobility of vehicles. In practice, artificial noise (AN) assisted beamforming scheme can be utilized for fighting against multiple malicious eavesdroppers. Unfortunately, channel estimation errors caused by the high mobility of vehicles may lead to noise leakage at the legitimate receiver, thus resulting significant loss in the secrecy performance. In this paper, a joint cooperative jamming and AN aided secure transmission scheme is proposed in vehicular communication network by considering the imperfect channel state information(CSI). In this scheme, cooperative jammers are utilized for further enhancing physical layer security. We derive the closed-form expressions of the connection and secrecy outage probabilities in the presence of AN leakage and signal offset using a stochastic geometry approach. Furthermore, the proposed scheme is capable of maximizing the secrecy throughput in terms of relative vehicular velocity for balancing both the reliability and security of the legitimate link. We further comprehensively analyze the effect of key system parameters on secrecy performance through asymptotic analysis. Finally, the effectiveness of the proposed scheme is validated by numerical results.


Sign in / Sign up

Export Citation Format

Share Document