scholarly journals Characterization of Nutrient Disorders of Cannabis sativa

2019 ◽  
Vol 9 (20) ◽  
pp. 4432 ◽  
Author(s):  
Paul Cockson ◽  
Hunter Landis ◽  
Turner Smith ◽  
Kristin Hicks ◽  
Brian E. Whipker

Essential plant nutrients are needed at crop-specific concentrations to obtain optimum growth or yield. Plant tissue (foliar) analysis is the standard method for measuring those levels in crops. Symptoms of nutrient deficiency occur when those tissue concentrations fall to a level where growth or yield is negatively impacted and can serve as a visual diagnostic tool for growers and researchers. Both nutrient deficiency symptoms and their corresponding plant tissue concentrations have not been established for cannabis. To establish nutrient concentrations when deficiency or toxicity symptoms are expressed, Cannabis sativa ‘T1’ plants were grown in silica sand culture, and control plants received a complete modified Hoagland’s all-nitrate solution, whereas nutrient-deficient treatments were induced with a complete nutrient formula withholding a single nutrient. Toxicity treatments were induced by increasing the element tenfold higher than the complete nutrient formula. Plants were monitored daily and, once symptoms manifested, plant tissue analysis of all essential elements was performed by most recent mature leaf (MRML) tissue analysis, and descriptions and photographs of nutrient disorder symptomology were taken. Symptoms and progressions were tracked through initial, intermediate, and advanced stages. Information in this study can be used to diagnose nutrient disorders in Cannabis sativa.

Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 461
Author(s):  
Patrick Veazie ◽  
Paul Cockson ◽  
Josh Henry ◽  
Penelope Perkins-Veazie ◽  
Brian Whipker

Essential plant nutrients are needed at crop-specific concentrations to obtain optimal growth and yield. Foliar tissue analysis is the standard method for assessing nutrient levels in plants. Symptoms of nutrient deficiency or toxicity occur when the foliar tissue values become too low or high. Diagnostic nutrient deficiency criteria for Brassica rapa var. Chinensis (bok choy) is lacking in the current literature. In this study, green (‘Black Summer’) and purple (‘Red Pac’) bok choy plants were grown in silica sand culture, with control plants receiving a complete modified Hoagland’s all-nitrate solution, and nutrient-deficient plants induced by using a complete nutrient formula withholding a single nutrient. Tissue samples were collected at the first sign of visual disorder symptoms and analyzed for dry weight and nutrient concentrations of all plant essential elements. Six weeks into the experiment, the newest matured leaves were sampled for chlorophyll a, b, and total carotenoids concentrations for both cultivars, and total anthocyanin concentration in ‘Red Pac’. Compared to control plants, the dry weight of ‘Black Summer’ green bok choy was significantly lower for nitrogen (N), phosphorus (P), calcium (Ca), or boron (B) deficiency treatments, and nutrient concentrations were lower for all variables except iron (Fe) deficiency. Dry weight was less in ‘Red Pac’ plants grown without N, potassium (K), Ca, B, or molybdenum (Mo), and nutrient concentrations were lower for all except Mo-deficiency compared to controls. Total chlorophyll and total carotenoid concentrations were lower in leaves from N−, Fe-, and manganese- (Mn) deficient plants of both cultivars. Leaf anthocyanin concentration was lower only for K-, Ca-, and B-deficiencies in ‘Red Pac’. Our results indicate that visual symptoms of nutrient deficiency are well correlated with nutrient disorders. In contrast, changes in dry weight, chlorophyll, and anthocyanin did not show consistent changes across nutrient disorders.


2017 ◽  
Vol 27 (6) ◽  
pp. 789-793
Author(s):  
Paul Cockson ◽  
Josh B. Henry ◽  
Ingram McCall ◽  
Brian E. Whipker

To produce popular floriculture crops, such as gloxinia (Sinningia speciosa), growers must be equipped with cultural information including the ability to recognize and characterize disorders. Diagnostic criteria for nutrient disorders of gloxinia are absent from current literature. Therefore, gloxinia plants were grown in silica-sand culture to induce, characterize, and photograph symptoms of nutritional disorders. Control plants received a complete modified Hoagland’s all-nitrate solution, whereas nutrient-deficient treatments were induced with a complete nutrient formula minus a single nutrient. Boron toxicity was induced by increasing the element 10-fold higher than the complete nutrient formula. We monitored plants continuously to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and critical tissue concentrations are presented. Of 13 treatments, 10 exhibited symptomology; copper, molybdenum, and zinc remained asymptomatic. Symptoms of nitrogen, phosphorus, potassium, magnesium, and sulfur deficiencies, plus boron toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown in nitrogen, potassium, sulfur, and iron deficient and boron toxic conditions.


2012 ◽  
Vol 22 (4) ◽  
pp. 502-508 ◽  
Author(s):  
Jared Barnes ◽  
Brian Whipker ◽  
Ingram McCall ◽  
Jonathan Frantz

To produce floriculture crops like mealy-cup sage (Salvia farinacea), growers must be equipped with cultural information including the ability to recognize and characterize nutrient disorders. ‘Evolution’ mealy-cup sage plants were grown in silica-sand culture to induce, describe, and photograph symptoms of nutritional disorders. Plants received a complete modified Hoagland's all-nitrate solution of (macronutrient concentrations in millimoles) 15 nitrate-nitrogen (N), 1.0 phosphorus (P), 6.0 potassium (K), 5.0 calcium (Ca), 2.0 magnesium (Mg), and 2.0 sulfur (S) plus (micronutrient concentrations in micromoles) 72 iron (Fe), 18 manganese (Mn), 3 copper (Cu), 3 zinc (Zn), 45 boron (B), and 0.1 molybdenum (Mo). Nutrient-deficient treatments were induced with a complete nutrient formula minus one of the nutrients. The B-toxicity treatment was induced by increasing the element 10-fold higher than the complete nutrient formula. Reagent-grade chemicals and deionized (DI) water of 18 million ohms per centimeter purity were used to formulate treatment solutions. We monitored plants daily to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and corresponding tissue concentrations were determined. Out of 13 treatments, 12 exhibited symptomology; Mo was asymptomatic. Symptoms of N, P, S, Ca, and K deficiencies and B toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown under N-, Cu-, and Zn-deficient conditions. Necrosis was a common symptom observed, but use of other diagnostic criteria about location on the plant and progression of the disorder can aid growers in diagnosing nutrient disorders of mealy-cup sage.


2008 ◽  
Vol 133 (3) ◽  
pp. 341-350 ◽  
Author(s):  
Neil Mattson ◽  
Heiner Lieth

Plant internal nutrient status is known to influence the kinetics of nutrient absorption, but little on this relationship has been reported for roses (Rosa spp. L.). The objectives of this experiment were to determine the influence of NO3, PO4, and K deprivation on plant tissue concentrations and relative growth rates and to quantify the influence of nutrient deprivation on absorption kinetic parameters. Rose plants growing in solution culture were deprived of N, P, or K for 0 to 20 days to establish differing tissue concentrations. Absorption kinetics were then determined based on the rate of NO3, PO4, or K depletion from solution over a range of concentrations. The data were fit to a modified Michaelis-Menten equation to account for the influence of internal nutrient status on absorption kinetics. Plants deprived of the nutrients for up to 20 d did not show significantly reduced root or plant fresh weight as compared with control plants. Plant tissue concentrations differed significantly by deprivation treatment and varied from 1.4% to 2.3% for N, 0.22% to 0.35% for P, and from 1.0% to 2.0% for K. Plants deprived of NO3, PO4, and K subsequently showed increased absorption rates. This was primarily expressed as an increased maximum absorption rate for NO3 and PO4. In contrast, K-deprived plants primarily exhibited an increased affinity (decreased Km) for K. The results demonstrate the plasticity of rose plants to grow and absorb nutrients under varying internal nutrient concentrations. This work quantifies the influence of rose plant nutritional status on the kinetics of NO3, PO4, and K absorption. The knowledge would be useful to improve models for providing decision support for fertilization based on plant growth rates and internal nutrient status.


2016 ◽  
Vol 47 (5) ◽  
pp. 630-638 ◽  
Author(s):  
Elena Mikhailova ◽  
Donald Hagan ◽  
Julia Sharp ◽  
Tristan Allerton ◽  
Kylie Burdette ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 426
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Fabiola Silva-Mieres ◽  
Luciano Arellano-Arriagada ◽  
Cristian Parra-Sepúlveda ◽  
Humberto Bernasconi ◽  
...  

Helicobacter pylori, a Gram-negative bacterium, has as a natural niche the human gastric epithelium. This pathogen has been reported to enter into Candida yeast cells; however, factors triggering this endosymbiotic relationship remain unknown. The aim of this work was to evaluate in vitro if variations in nutrient concentration in the cultured medium trigger the internalization of H. pylori within Candida cells. We used H. pylori–Candida co-cultures in Brucella broth supplemented with 1%, 5% or 20% fetal bovine serum or in saline solution. Intra-yeast bacteria-like bodies (BLBs) were observed using optical microscopy, while intra-yeast BLBs were identified as H. pylori using FISH and PCR techniques. Intra-yeast H. pylori (BLBs) viability was confirmed using the LIVE/DEAD BacLight Bacterial Viability kit. Intra-yeast H. pylori was present in all combinations of bacteria–yeast strains co-cultured. However, the percentages of yeast cells harboring bacteria (Y-BLBs) varied according to nutrient concentrations and also were strain-dependent. In conclusion, reduced nutrients stresses H. pylori, promoting its entry into Candida cells. The starvation of both H. pylori and Candida strains reduced the percentages of Y-BLBs, suggesting that starving yeast cells may be less capable of harboring stressed H. pylori cells. Moreover, the endosymbiotic relationship between H. pylori and Candida is dependent on the strains co-cultured.


1969 ◽  
Vol 51 (4) ◽  
pp. 325-333
Author(s):  
Alex G. Alexander

Deficiencies of nitrogen, phosphorus, potassium, and calcium were gradually induced in sugarcane grown by sand culture. There were three objectives: 1, To determine whether nutritional stress in general is a means of inducing higher sucrose production; 2, to determine whether sucrose increases can be triggered without reaching nutrient-deficiency levels which would reduce tonnage; and 3, to ascertain whether increased sucrose production can be traced to common behavior patterns of hydrolytic and oxidative enzymes. All plants received a moderately high level of all nutrients until 14 weeks of age. Thereafter, individual nutrients were gradually lowered at intervals of 2 weeks, while control plants continued to receive the original levels. All plants subjected to nutritional stress accumulated higher leaf sucrose than control plants, regardless of the nutrient withheld. In each instance sucrose increases were recorded before nutrient supply had reached deficiency proportions. General nutritional stress thus appears to trigger variations in sugar level, with nutritional imbalance rather than actual deficiency being a critical factor. All plants under nutritional stress revealed a concurrent suppression of amylase as sucrose increased. Peroxidase was greatly stimulated by all nutritional treatments. Phosphatase was suppressed by decreasing nitrate and phosphorus, but was generally unaffected by the potassium and calcium treatments. Several distinct mechanisms of increased sucrose formation are indicated by the enzyme data. Sensitivity of amylase to changing nutrient supply is discussed from the standpoint of a possible indicator of approaching deficiency.


Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 98
Author(s):  
Jennifer Kalinowski ◽  
Keith Edmisten ◽  
Jeanine Davis ◽  
Michelle McGinnis ◽  
Kristin Hicks ◽  
...  

There is a growing interest in the production of hemp for the extraction of cannabidiol (CBD) due to reported therapeutic benefits. Recent policy reform has permitted state hemp pilot programs, including the land grant research institutions, the ability to investigate the potential of growing and harvesting Cannabis sativa plants (≤0.3% tetrahydrocannabinol) for these purposes in the U.S. There are vast gaps of knowledge regarding the fertility requirements of hemp cultivars grown in a horticultural production setting for floral attributes such as the cannabinoid constituents. Foliar tissue analysis provides an avenue to determine adequate ranges for nutrient uptake and estimating fertilizer requirements prior to visual symptoms of deficiency or toxicity. To facilitate a survey range of elemental nutrient acquisition in hemp cultivars propagated for CBD production, foliar analysis was executed using the most recently mature leaves (MRML) of mother stock plants. All plants were maintained in the vegetative stage for twelve weeks, prior to initiation of cutting for clone harvesting. A total of thirteen cultivars were utilized to broaden previously reported baseline survey ranges. Significant differences were found among all thirteen cultivars in accumulation of both micro and macro essential nutrients, widening the range of the fertility requirements of Cannabis plants grown in this production model for CBD harvesting.


Sign in / Sign up

Export Citation Format

Share Document