scholarly journals Failure Analysis on a Collapsed Flat Cover of an Adjustable Ballast Tank Used in Deep-Sea Submersibles

2019 ◽  
Vol 9 (23) ◽  
pp. 5258
Author(s):  
Fang Wang ◽  
Mian Wu ◽  
Genqi Tian ◽  
Zhe Jiang ◽  
Shun Zhang ◽  
...  

A flat cover of an adjustable ballast tank made of high-strength maraging steel used in deep-sea submersibles collapsed during the loading process of external pressure in the high-pressure chamber. The pressure was high, which was the trigger of the collapse, but still considerably below the design limit of the adjustable ballast tank. The failure may have been caused by material properties that may be defective, the possible stress concentration resulting from design/processing, or inappropriate installation method. The present paper focuses on the visual inspections of the material inhomogeneity, ultimate cause of the collapse of the flat cover in pressure testing, and finite element analysis. Special attention is paid to the toughness characteristics of the material. The present study demonstrates the importance of material selection for engineering components based on the comprehensive properties of the materials.

In current age of process industry, demand of longdistance belt conveyor is rapidly increasing. For which lot of research works are under process to improve performance & durability of long-distance belt conveyor. For which there is lot of scope available to use high strength material to manufacture belt conveyor mountings & accessories to increase their durability & to reduce maintenance, which directly increase performance of long distance belt conveyor. During our analysis, it was found that there are major failure issues being reported for conveyor’s drive shaft. It was also understood that major drive shaft failure was due to incorrect design & wrong material selection for conveyor drive shaft. The objective of this paper is to optimize design& material selection of drive shaft for long distance belt conveyor. We have modified drive shaft designs over conventional shaft design & analyzed these designs with different high strength material materials. We have also concentrated to reduce weight and assembly cost of drive shaft which include drive shaft with Plummer blocks & bearings arrangement. For design optimization of conveyor’s drive shaft various design software’s i.e. CAD NX and ANSYS have been used. Static Structural analysis performed to find out directional & total deformation and fracture analysis performed to find out values of stress intensity factors & J integral of drive shaft, under defined identical loading & boundary condition. Design Modelling done on CAD NX & Finite Element Analysis done on ANSYS.


Author(s):  
Karel Minnaar ◽  
Brian W. Duffy ◽  
Erlend Olso ◽  
Scott D. Papka ◽  
Michael M. Zhang

A new high strength steel linepipe with a specified minimum yield strength of 120 ksi (X120) has recently been introduced to industry. The newly developed linepipe meets all mechanical property targets of an X120 grade material as verified through an extensive small and large-scale experimental program. Design equations have been developed and verified with full scale testing that allow pipeline designs that take full economic advantage of the higher strength of X120. This paper focuses on the development and verification of capacity equations for bending loads, external pressure (collapse) loads, combined bending and external pressure loads, and internal pressure (burst) loads. The corresponding response of the pipe was investigated with finite element analysis (FEA). Analytical equations that predict the burst, bending, and collapse capacities were then established based on parametric studies performed using FEA models. To gain confidence in the models, full size pipe tests were conducted and the results compared to FEA. The testing demonstrated that the FEA models accurately predict the behavior of the X120 pipe. Modifications to the existing equations were made when necessary to ensure the capacity equations correctly capture the pipe response for higher D/t ratios and for the higher strength X120 material. Material sensitivity studies show that the new equations accurately predict the X120 behavior over the range of load conditions evaluated.


Author(s):  
Yu Zhang ◽  
Gui Chu ◽  
Pei Zhen Wu ◽  
Meng Lan Duan

Considering the adhesive joint widely used in industry, and its successful use in repairing systems in offshore pipelines, its application for pipe lines in deep sea is proposed. As pipe lines underwater are subjected to tension, bending, internal and external pressure, and adhesive joints have the singular stress fields at the end of interfaces of different materials, adhesive joints of pipes lines are the weakest parts in term of strength. This research studied the strength of adhesive joints of pipe lines under tension, bending, internal and external pressure, and the combination of these loadings using finite element analysis. It was determined that the adhesive joints of pipe lines are more prone to failure along the adhesive-pipe interface under bending compared to other loadings. Moreover, the effects of adhesive thickness and cover length on the strength of adhesive joint are investigated in this paper.


2021 ◽  
Author(s):  
R. M. Farizuan ◽  
A. R. Irfan ◽  
H. Radhwan ◽  
Shafeeq Ahmad Shamim Ahmad ◽  
Khoo Kin Fai ◽  
...  

2021 ◽  
Vol 16 (2-3) ◽  
pp. 61-74
Author(s):  
Sahar Ghasemi ◽  
Amir Mirmiran ◽  
Yulin Xiao ◽  
Kevin Mackie

A super lightweight deck can enhance load rating and functionality of a bridge, especially those identified as structurally deficient. This study was aimed to develop and experimentally validate a novel bridge deck as an ultra-lightweight low-profile waffle slab of ultra-high-performance concrete (UHPC) with either carbon fiber reinforced polymer (CFRP) or high strength steel (HSS) reinforcement. The proposed system lends itself to accelerated bridge construction, rapid deck replacement in bridges with load restrictions, and bridge widening applications without the need to replace girders. Performance and failure modes of the proposed deck were initially assessed through extensive lab experiments and finite element analysis, which together confirmed that the proposed deck panel meets the AASHTO LRFD requirements. The proposed deck system is not susceptible to punching shear of its thin slab and fails in a rather ductile manner. To evaluate its long-term performance, the system was further tested under the dynamic impact of wheel load at the Accelerated Pavement Testing (APT) facility of the Florida Department of Transportation using a Heavy Vehicle Simulator (HVS).


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Sachin Sunil Kelkar ◽  
Puneet Gautam ◽  
Shubham Sahai ◽  
Prajwal Sanjay Agrawal ◽  
R. Manoharan

AbstractThis study explains a coherent flow for designing, manufacturing, analyzing, and testing a tunable anti-roll bar system for a formula student racecar. The design process starts with the analytical calculation for roll stiffness using constraining parameters such as CG (Center of Gravity) height, total mass, and weight distribution in conjunction with suspension geometry. Then, the material selection for the design i.e. Aluminum 7075 T6 is made based on parameters such as density and modulus of rigidity. A MATLAB program is used to iterate deflection vs load for different stiffness and shaft diameter values. This is then checked with kinematic deflection values in Solidworks geometry. To validate with the material deflection, finite element analysis is performed on ANSYS workbench. Manufacturing accuracy for the job is checked using both static analysis in lab settings and using sensors on vehicles during on-track testing. The error percentage is found to be 4% between the target stiffness and the one obtained from static testing. Parameters such as moment arm length, shaft diameter and length, and deflection were determined and validated. This paper shows the importance of an anti-roll bar device to tune the roll stiffness of the car without interfering with the ride stiffness.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 952
Author(s):  
Shiju Li ◽  
Bowen Wei ◽  
Wei Yu ◽  
Chen He ◽  
Yong Li ◽  
...  

In this work, a Al-Cu-Li alloy plate with outstanding mechanical properties was successfully prepared with electromagnetic twin-roll casting (TRC) technology. The microstructure of Al-Cu-Li alloy manufactured by conventional mold casting, TRC, and electromagnetic TRC was studied in detail. The action mechanism of electromagnetic oscillation field (EOF) in the TRC process was studied by systematic experimental characterization and numerical simulation. The results show that the EOF will enlarge the circumfluence area in the cast-rolling zone, accelerate the mass transfer and heat transfer in the molten pool, and make the solute field and flow field in the liquid cavity tend to be evenly distributed. Further, the introduction of the EOF will produce the electromagnetic body force F with the maximum strength of 14 N/m3. The F acting on the solidification front will eliminate the accumulation and deposition of Cu2+, Li+, Mg2+, Zn2+, Mn2+ at the dendrite tip and inhibit the growth of dendrites. At the same time, the F can refine the microstructure of the TRC plate, promote the formation of equiaxed crystals, improve the supersaturated solid solubility of solute elements in the a(Al) matrix, and avoid the appearance of obvious solute segregation area or the formation of excessive solute enrichment area. Therefore, the macro-segregation in TRC plate was significantly reduced, the solidification structure was dramatically refined, and the comprehensive properties of the alloy were remarkably improved.


Sign in / Sign up

Export Citation Format

Share Document