Spaceborne Thermal Remote Sensing for Characterization of the Land Surface Temperature of Manmade and Natural Features
The changes in land surface temperature (LST) concerning time and space are mapped with the help of satellite remote sensing techniques. These measurements are used for determining several geophysical parameters including soil moisture, evapotranspiration, thermal inertia, and vegetation water stress. This study aims at calculating and analyzing the LST of manmade and natural features of Doon Valley, Uttarakhand, India. The study area includes the forest range of Doon Valley, agricultural areas, and urban settlements. Spaceborne multitemporal thermal bands of Landsat 8 were used to calculate the LST of various features of the study area. Split-window algorithm and emissivity-based algorithms were tested on the Landsat-8 data for LST calculation. The study also explored the effect of atmospheric correction on the temperature calculation. The land surface temperature determined using an emissivity based method that did not provide atmospheric correction was found to be less accurate as compared to the results by the split-window method. The LST for urban settlements is higher than the forest cover. A temporal analysis of the data shows an increase in the temperature for October 2018. The study shows the potential of the spaceborne thermal sensors for the multitemporal analysis of the LST measurement of manmade and natural features.