scholarly journals A Study on Microscale Wind Simulations with a Coupled WRF–CFD Model in the Chongli Mountain Region of Hebei Province, China

Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 731
Author(s):  
Shaohui Li ◽  
Xuejin Sun ◽  
Shan Zhang ◽  
Shijun Zhao ◽  
Riwei Zhang

To ensure successful hosting of the 2022 Olympic Winter Games, a comprehensive understanding of the wind field characteristics in the Chongli Mountain region is essential. The purpose of this research was to accurately simulate the microscale wind in the Chongli Mountain region. Coupling the Weather Research and Forecasting (WRF) model with a computational fluid dynamics (CFD) model is a method for simulating the microscale wind field over complex terrain. The performance of the WRF-CFD model in the Chongli Mountain region was enhanced from two aspects. First, as WRF offers multiple physical schemes, a sensitivity analysis was performed to evaluate which scheme provided the best boundary condition for CFD. Second, to solve the problem of terrain differences between the WRF and CFD models, an improved method capable of coupling these two models is proposed. The results show that these improvements can enhance the performance of the WRF-CFD model and produce a more accurate microscale simulation of the wind field in the Chongli Mountain region.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2549
Author(s):  
Shaohui Li ◽  
Xuejin Sun ◽  
Riwei Zhang ◽  
Chuanliang Zhang

Understanding the details of micro-scale wind fields is important in the development of wind energy. Research has proven that coupling Numerical Weather Prediction (NWP) and Computational Fluid Dynamics (CFD) models is a better approach for micro-scale wind field simulation. The main purpose of this work is to improve the NWP/CFD model performance in two parts: (i) developing a new coupling method that is more suitable for complex terrain between the NWP and CFD models, and (ii) applying a data assimilation system in the CFD model. Regarding part (i), in order to solve the problem of great topographical difference at the domain boundaries between the two models, Cressman interpolation is utilized to impose the NWP model wind on the CFD model boundaries. In part (ii), an assimilation method, nudging, to apply assimilation of observations into the CFD model is explored. Based on the Cressman interpolation coupling method, a preliminary implementation of data assimilation is performed. The results show that the NWP/CFD model with the improved coupling method may capture the details of micro-scale wind fields more accurately. Using data assimilation, the NWP/CFD model performance may be further improved by cooperating observation data.


Author(s):  
Jacek Smolka ◽  
Adam Fic ◽  
Andrzej J. Nowak ◽  
Ludwik Kosyrczyk

Purpose – The purpose of this paper is to develop a 3-D fully transient numerical model of the heat and fluid flow associated with the chemical reactions that occur in the heating system of the coke oven battery. As a result, the model can be used to provide data for the control system of the battery to reduce energy consumption and emissions and to obtain a product of the desired quality. Design/methodology/approach – In the proposed model, an accurate representation of the heating flue geometry, the volumetric heat sources as a result of the coke oven gas combustion, the temperature- and mole fraction-dependent properties of the gases were taken into account. The most important part of the model was the unsteady boundary condition definition that allowed the modeling of the periodic heat delivery to the two oven heating walls, both in the coking and the reversion cycles. Findings – The temperatures obtained using the computational fluid dynamics (CFD) model showed the same pattern of temperature variations as that observed in the experiments. It was also found that the quality of the temperature variation predictions was highly dependent on the radiation model settings. Originality\value – The CFD models available in the literature describe the steady or pseudo-steady state operation of the heating system of the coke oven battery. The model developed in this work fully reflects the unsteady character of this heating system. Moreover, the proposed model is prepared for coupling with a model of the coking process that occurs in the two neighboring coke oven chambers.


2010 ◽  
Vol 49 (2) ◽  
pp. 268-287 ◽  
Author(s):  
Pedro A. Jiménez ◽  
J. Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
Jorge Navarro ◽  
Juan P. Montávez ◽  
...  

Abstract This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model for the period 1992–2005. The evaluation focuses on the performance of the simulation to reproduce the wind variability within subregions identified from observations over the 1999–2002 period in a previous study. By comparing with wind observations, the model results show the ability of the WRF dynamical downscaling over a region of complex terrain. The higher spatiotemporal resolution of the WRF simulation is used to evaluate the extent to which the length of the observational period and the limited spatial coverage of observations condition one’s understanding of the wind variability over the area. The subregions identified with the simulation during the 1992–2005 period are similar to those identified with observations (1999–2002). In addition, the reduced number of stations reasonably represents the spatial wind variability over the area. However, the analysis of the full spatial dimension simulated by the model suggests that observational coverage could be improved in some subregions. The approach adopted here can have a direct application to the design of observational networks.


2021 ◽  
Author(s):  
Philip McKeen

This research investigates and attempts to quantify the hazards associated with fire in metrostations. The use of numerical simulations for the analysis of fire safety within metro-stations allows for the prediction and analysis of hazards within the built environment. Such approaches form the growing basis of performance based design (PBD), which can optimize design solutions. The simulations utilize Fire Dynamics Simulator (FDS), a Computational Fluid Dynamics (CFD) model and Pathfinder, an evacuation modeling software. The safety of underground metro-stations is analyzed through the simulation of smoke spread and egress modelling. CFD models of TTC’s Union Station and TransLink’s Yaletown Station are developed to allow for simulations of smoke spread scenarios. These models are evaluated in regards to the preservation of tenability and influence on the Available Safe Egress Time (ASET). The egress of metro-stations is modelled and analyzed to determine the Required Safe Egress Time (RSET).


2006 ◽  
Author(s):  
Sue Ellen Haupt ◽  
Robert F. Kunz ◽  
L. Joel Peltier ◽  
James J. Dreyer ◽  
Howard J. Gibeling

Computational fluid dynamics (CFD) models are effective at predicting dispersion of contaminants in or near a building. It is well known that thermal effects impact the flow around and within structures. This study assesses the importance of time of day, building materials, sky cover, etc. on the local thermal heating of a building. All these features affect the buoyancy, and thus, the resulting flow and dispersion about and inside a building. This study examines that impact through including full thermal coupling with flow calculations for an environmentally friendly building, including thermal radiation, conduction, and convection effects with a CFD model for both the interior and exterior of a building. The emphasis here is on simulating the impact of heating on contaminant dispersion.


2020 ◽  
Vol 35 (3) ◽  
pp. 1081-1096 ◽  
Author(s):  
Jeffrey Beck ◽  
John Brown ◽  
Jimy Dudhia ◽  
David Gill ◽  
Tracy Hertneky ◽  
...  

Abstract A new hybrid, sigma-pressure vertical coordinate was recently added to the Weather Research and Forecasting (WRF) Model in an effort to reduce numerical noise in the model equations near complex terrain. Testing of this hybrid, terrain-following coordinate was undertaken in the WRF-based Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) models to assess impacts on retrospective and real-time simulations. Initial cold-start simulations indicated that the majority of differences between the hybrid and traditional sigma coordinate were confined to regions downstream of mountainous terrain and focused in the upper levels. Week-long retrospective simulations generally resulted in small improvements for the RAP, and a neutral impact in the HRRR when the hybrid coordinate was used. However, one possibility is that the inclusion of data assimilation in the experiments may have minimized differences between the vertical coordinates. Finally, analysis of turbulence forecasts with the new hybrid coordinate indicate a significant reduction in spurious vertical motion over the full length of the Rocky Mountains. Overall, the results indicate a potential to improve forecast metrics through implementation of the hybrid coordinate, particularly at upper levels, and downstream of complex terrain.


Author(s):  
Zheji Liu ◽  
D. Lee Hill ◽  
Gary Colby

A radial sidestream inlet is commonly utilized in multi-stage centrifugal compressors to introduce additional gas into the mid-stage of the compressor. The flow distribution after the junction of the sidestream and the main return channel of the upstream stage can significantly affect the performance of the next stage. In this study, the mixing between the fluid from the sidestream component and the fluid from the main return channel was investigated numerically using Computational Fluid Dynamics (CFD). A variety of CFD models of different geometry, different boundary conditions, and different grid density were developed to analyze the uniformity of the flow entering the impeller of the next stage. The flow distribution difference between the sidestream CFD model and the CFD model with the sidestream coupled to the main return channel suggests that both the return channel and the sidestream have to be modeled together to get meaningful results. The results of this effort were used in conjunction with production test data to help resolve a performance shortfall of a multi-stage centrifugal compressor with sidestream injection. The test data from the final design is also provided to show the resulting improvement in head rise.


2010 ◽  
Vol 138 (3) ◽  
pp. 796-817 ◽  
Author(s):  
Katherine A. Lundquist ◽  
Fotini Katopodes Chow ◽  
Julie K. Lundquist

Abstract This paper describes an immersed boundary method that facilitates the explicit resolution of complex terrain within the Weather Research and Forecasting (WRF) model. Mesoscale models, such as WRF, are increasingly used for high-resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. The use of an alternative-gridding technique, known as an immersed boundary method, alleviates coordinate transformation errors and eliminates restrictions on terrain slope that currently limit mesoscale models to slowly varying terrain. Simulations are presented for canonical cases with shallow terrain slopes, and comparisons between simulations with the native terrain-following coordinates and those using the immersed boundary method show excellent agreement. Validation cases demonstrate the ability of the immersed boundary method to handle both Dirichlet and Neumann boundary conditions. Additionally, realistic surface forcing can be provided at the immersed boundary by atmospheric physics parameterizations, which are modified to include the effects of the immersed terrain. Using the immersed boundary method, the WRF model is capable of simulating highly complex terrain, as demonstrated by a simulation of flow over an urban skyline.


2021 ◽  
Author(s):  
Philip McKeen

This research investigates and attempts to quantify the hazards associated with fire in metrostations. The use of numerical simulations for the analysis of fire safety within metro-stations allows for the prediction and analysis of hazards within the built environment. Such approaches form the growing basis of performance based design (PBD), which can optimize design solutions. The simulations utilize Fire Dynamics Simulator (FDS), a Computational Fluid Dynamics (CFD) model and Pathfinder, an evacuation modeling software. The safety of underground metro-stations is analyzed through the simulation of smoke spread and egress modelling. CFD models of TTC’s Union Station and TransLink’s Yaletown Station are developed to allow for simulations of smoke spread scenarios. These models are evaluated in regards to the preservation of tenability and influence on the Available Safe Egress Time (ASET). The egress of metro-stations is modelled and analyzed to determine the Required Safe Egress Time (RSET).


Sign in / Sign up

Export Citation Format

Share Document