scholarly journals A Feasibility Study of Simulating the Micro-Scale Wind Field for Wind Energy Applications by NWP/CFD Model with Improved Coupling Method and Data Assimilation

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2549
Author(s):  
Shaohui Li ◽  
Xuejin Sun ◽  
Riwei Zhang ◽  
Chuanliang Zhang

Understanding the details of micro-scale wind fields is important in the development of wind energy. Research has proven that coupling Numerical Weather Prediction (NWP) and Computational Fluid Dynamics (CFD) models is a better approach for micro-scale wind field simulation. The main purpose of this work is to improve the NWP/CFD model performance in two parts: (i) developing a new coupling method that is more suitable for complex terrain between the NWP and CFD models, and (ii) applying a data assimilation system in the CFD model. Regarding part (i), in order to solve the problem of great topographical difference at the domain boundaries between the two models, Cressman interpolation is utilized to impose the NWP model wind on the CFD model boundaries. In part (ii), an assimilation method, nudging, to apply assimilation of observations into the CFD model is explored. Based on the Cressman interpolation coupling method, a preliminary implementation of data assimilation is performed. The results show that the NWP/CFD model with the improved coupling method may capture the details of micro-scale wind fields more accurately. Using data assimilation, the NWP/CFD model performance may be further improved by cooperating observation data.

Author(s):  
Xiaoyu Luo ◽  
Yiwen Cao

In the field of civil engineering, the meteorological data available usually do not have the detailed information of the wind near a certain site. However, the detailed information of the wind field during typhoon is important for the wind-resistant design of civil structures. Furthermore, the resolution of the meteorological data available by the civil engineers is too coarse to be applicable. Therefore it is meaningful to obtain the detailed information of the wind fields based on the meteorological data provided by the meteorological department. Therefore, in the present study, a one-way coupling method between WRF and CFD is adopted and a method to keep the mass conservation during the simulation in CFD is proposed. It is found that using the proposed one-way coupling method, the predicted wind speed is closer to the measurement. And the curvature of the wind streamline during typhoon is successfully reproduced.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 731
Author(s):  
Shaohui Li ◽  
Xuejin Sun ◽  
Shan Zhang ◽  
Shijun Zhao ◽  
Riwei Zhang

To ensure successful hosting of the 2022 Olympic Winter Games, a comprehensive understanding of the wind field characteristics in the Chongli Mountain region is essential. The purpose of this research was to accurately simulate the microscale wind in the Chongli Mountain region. Coupling the Weather Research and Forecasting (WRF) model with a computational fluid dynamics (CFD) model is a method for simulating the microscale wind field over complex terrain. The performance of the WRF-CFD model in the Chongli Mountain region was enhanced from two aspects. First, as WRF offers multiple physical schemes, a sensitivity analysis was performed to evaluate which scheme provided the best boundary condition for CFD. Second, to solve the problem of terrain differences between the WRF and CFD models, an improved method capable of coupling these two models is proposed. The results show that these improvements can enhance the performance of the WRF-CFD model and produce a more accurate microscale simulation of the wind field in the Chongli Mountain region.


Author(s):  
L. CUCURULL ◽  
S. P. F. CASEY

AbstractAs global data assimilation systems continue to evolve, Observing System Simulation Experiments (OSSEs) need to be updated to accurately quantify the impact of proposed observing technologies in weather forecasting. Earlier OSSEs with radio occultation (RO) observations have been updated and the impact of the originally proposed Constellation Observing Satellites for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, with a high-inclination and low-inclination component, has been investigated by using the operational data assimilation system at NOAA and a 1-dimensional bending angle RO forward operator. It is found that the impact of the low-inclination component of the originally planned COSMIC-2 mission (now officially named COSMIC-2) has significantly increased as compared to earlier studies, and significant positive impact is now found globally in terms of mass and wind fields. These are encouraging results as COSMIC-2 was successfully launched in June 2019 and data have been recently released to operational weather centers. Earlier findings remain valid indicating that globally distributed RO observations are more important to improve weather prediction globally than a denser sampling of the tropical latitudes. Overall, the benefits reported here from assimilating RO soundings are much more significant than the impacts found in previous OSSEs. This is largely attributed to changes in the data assimilation and forecast system and less to the more advanced 1-dimensional forward operator chosen for the assimilation of RO observations.


2013 ◽  
Vol 6 (1) ◽  
pp. 1223-1257
Author(s):  
A. K. Miltenberger ◽  
S. Pfahl ◽  
H. Wernli

Abstract. A module to calculate online trajectories has been implemented into the non-hydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are fairly small for high-resolution simulations. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO module an Alpine North Föhn event in summer 1987 has been simulated with horizontal resolutions of 2.2 km, 7 km, and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50–190 km and 150–750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.


2007 ◽  
Vol 10 ◽  
pp. 77-83 ◽  
Author(s):  
T. Winterrath ◽  
W. Rosenow

Abstract. A new approach for the nowcasting of precipitation has been developed at the German Weather Service combining extrapolation techniques and Numerical Weather Prediction (NWP) for a lead time range of several hours. Radar-derived precipitation fields serve as input data for a tracking algorithm using model-derived wind data. The composite precipitation field is derived from the precipitation scans which are performed every five minutes at the 16 German radar stations. The data are corrected from clutter and shading effects. The tracking of this radar-derived precipitation field is performed using the temporally and spatially resolved horizontal wind fields at different pressure levels provided by the Local Model Europe (LME). The optimal wind field is derived from minimization of the least-squares difference between a linear combination of model wind data from different pressure levels and the linear displacement vectors calculated via pattern recognition from previous radar measurements. An area-preserving displacement of the precipitation fields is realized by eliminating the wind field divergence and by omitting the dynamical evolution of the precipitation fields. Advection is performed using the fourth-order Bott scheme. Forecasted data comprise precipitation rates for every five minutes lead time as well as hourly sums of precipitation. The verification of a case study's results against radar precipitation measurements lead to a mean Equitable Threat Score (ETS) of 70%, 46%, and 38% for the first, second, and third forecast hour, respectively.


2021 ◽  
Author(s):  
Xuanli Li ◽  
Jason B. Roberts ◽  
Jayanthi Srikishen ◽  
Jonathan L. Case ◽  
Walter A. Petersen ◽  
...  

Abstract. As a component of the National Aeronautics and Space Administration (NASA) Weather Focus Area and GPM Ground Validation participation in the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games (ICE-POP 2018) field research and forecast demonstration programs, hourly ocean surface meteorology properties were retrieved from the Global Precipitation Measurement (GPM) microwave observations for January – March 2018. In this study, the retrieved ocean surface meteorological products – 2-m temperature, 2-m specific humidity, and 10-m wind speed were assimilated into a regional numerical weather prediction (NWP) framework to explore the application of these observations for two heavy snowfall events during the ICE-POP 2018: 27–28 February, and 7–8 March 2018. The Weather Research and Forecasting (WRF) model and the community Gridpoint Statistical Interpolation (GSI) were used to conduct high resolution simulations and data assimilation experiments. The results indicate that the data assimilation has a large influence on surface thermodynamic and wind fields in the model initial condition for both events. With cycled data assimilation, positive influence of the retrieved surface observation was found for the March case with improved quantitative precipitation forecast and reduced error in temperature forecast. A slightly smaller yet positive impact was also found in the forecast of the February case.


2020 ◽  
Vol 12 (7) ◽  
pp. 1165 ◽  
Author(s):  
Yaodeng Chen ◽  
Zheng Yu ◽  
Wei Han ◽  
Jing He ◽  
Min Chen

As the first Geostationary Satellite with the LMI (Lightning Mapping Imager) instrument aboard running over the eastern hemisphere, FY-4A (Feng-Yun-4A) can better indicate severe convection and compensate for the limitations of radar observation in temporal and spatial resolution. In order to realize the application of FY-4A lightning data in numerical weather prediction (NWP) models, a logarithmic relationship between FY-4A lightning density and maximum radar reflectivity is presented to convert FY-4A lightning data into maximum FY-4A proxy reflectivity. Then, according to the profiles of radar reflectivity, the maximum FY-4A proxy reflectivity is extended to 3D FY-4A proxy reflectivity. Finally, the 3D FY-4A proxy reflectivity is assimilated in RMAPS-ST (Rapid-refresh Multi-scale Analysis and Prediction System—Short Term) to compare with radar assimilation. Four groups of continuous cycling data assimilation and forecasting experiments are carried out for a severe rainfall case. The results demonstrate that cycling assimilation of 3D FY-4A proxy reflectivity can adjust the moisture condition effectively, and indirectly affects the temperature and wind fields, then makes the thermal and dynamic analysis more reasonable. The Fractions Skill Scores (FSSs) show that the rainfall forecasts are improved significantly within 6 h by assimilating 3D FY-4A proxy reflectivity, which is similar to the parallel experiments in assimilating radar reflectivity. In addition, other cycling data assimilation experiments are carried out in mountainous areas without radar data. The improvement of precipitation forecasts in mountainous areas further proves that the application of assimilating 3D FY-4A proxy reflectivity can be considered a useful substitute where observed radar data are missing. Through the two severe rainfall cases, this method could be framed as an example of how to use lightning for data assimilation.


2013 ◽  
Vol 6 (6) ◽  
pp. 1989-2004 ◽  
Author(s):  
A. K. Miltenberger ◽  
S. Pfahl ◽  
H. Wernli

Abstract. A module to calculate online trajectories has been implemented into the nonhydrostatic limited-area weather prediction and climate model COSMO. Whereas offline trajectories are calculated with wind fields from model output, which is typically available every one to six hours, online trajectories use the simulated resolved wind field at every model time step (typically less than a minute) to solve the trajectory equation. As a consequence, online trajectories much better capture the short-term temporal fluctuations of the wind field, which is particularly important for mesoscale flows near topography and convective clouds, and they do not suffer from temporal interpolation errors between model output times. The numerical implementation of online trajectories in the COSMO-model is based upon an established offline trajectory tool and takes full account of the horizontal domain decomposition that is used for parallelization of the COSMO-model. Although a perfect workload balance cannot be achieved for the trajectory module (due to the fact that trajectory positions are not necessarily equally distributed over the model domain), the additional computational costs are found to be fairly small for the high-resolution simulations described in this paper. The computational costs may, however, vary strongly depending on the number of trajectories and trace variables. Various options have been implemented to initialize online trajectories at different locations and times during the model simulation. As a first application of the new COSMO-model module, an Alpine north foehn event in summer 1987 has been simulated with horizontal resolutions of 2.2, 7 and 14 km. It is shown that low-tropospheric trajectories calculated offline with one- to six-hourly wind fields can significantly deviate from trajectories calculated online. Deviations increase with decreasing model grid spacing and are particularly large in regions of deep convection and strong orographic flow distortion. On average, for this particular case study, horizontal and vertical positions between online and offline trajectories differed by 50–190 km and 150–750 m, respectively, after 24 h. This first application illustrates the potential for Lagrangian studies of mesoscale flows in high-resolution convection-resolving simulations using online trajectories.


2006 ◽  
Vol 45 (10) ◽  
pp. 1403-1413 ◽  
Author(s):  
Christopher W. O’Dell ◽  
Andrew K. Heidinger ◽  
Thomas Greenwald ◽  
Peter Bauer ◽  
Ralf Bennartz

Abstract Radiative transfer models for scattering atmospheres that are accurate yet computationally efficient are required for many applications, such as data assimilation in numerical weather prediction. The successive-order-of-interaction (SOI) model is shown to satisfy these demands under a wide range of conditions. In particular, the model has an accuracy typically much better than 1 K for most microwave and submillimeter cases in precipitating atmospheres. Its speed is found to be comparable to or faster than the commonly used though less accurate Eddington model. An adjoint has been written for the model, and so Jacobian sensitivities can be quickly calculated. In addition to a conventional error assessment, the correlation between errors in different microwave channels is also characterized. These factors combine to make the SOI model an appealing candidate for many demanding applications, including data assimilation and optimal estimation, from microwave to thermal infrared wavelengths.


2020 ◽  
Author(s):  
Xueling Liu ◽  
Arthur P. Mizzi ◽  
Jeffrey L. Anderson ◽  
Inez Fung ◽  
Ronald C. Cohen

Abstract. Observations of winds in the planetary boundary layer remain sparse making it challenging to simulate and predict atmospheric conditions that are most important for describing and predicting urban air quality. Short-lived chemicals are observed as plumes whose location is affected by boundary layer winds and with a lifetime affected by boundary layer height and mixing. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document