scholarly journals Characteristics of Ground-Level Ozone from 2015 to 2018 in BTH Area, China

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 130 ◽  
Author(s):  
Xiaozhen Fang ◽  
Huayun Xiao ◽  
Haixu Sun ◽  
Cheng Liu ◽  
Zhongyi Zhang ◽  
...  

With the ground-level ozone pollution problem increasingly prominent in recent years in China, it is particularly important in basic researches on ozone contamination characteristics. In this study, 13 cities in Beijing-Tianjin-Hebei (BTH) area were examined to determine the characteristics of surface ozone (O3) from 2015 to 2018. Due to the photochemical oxidation of ozone precursors (such as nitrogen oxides and carbon monoxide) along with the presence of sunlight and characteristics of local emission sources, the O3 and oxidant (OX) concentrations showed obvious seasonal variation and daily variation. It implicated that the O3 concentrations reached the maximum during summer. The concentrations of O3 were higher at daytime than those measured at nighttime. The ozone weekend effect was estimated by the difference and deviation, which exhibited that the difference between weekday and weekend were related to the concentrations of ozone precursors and PM, vehicle emissions, and solar radiation. Moreover, the O3 concentrations decreased with the increase of other air pollutants by correlation analysis. The ozone pollution was easily formed at light and moderate polluted periods when compared to other air quality levels.

2017 ◽  
Vol 68 (4) ◽  
pp. 824-829
Author(s):  
Cornel Ianache ◽  
Laurentiu Predescu ◽  
Mirela Predescu ◽  
Dumitru Dumitru

The serious air pollution problem has determined public concerns, worldwide. One of the main challenges for countries all over the world is caused by the elevated levels of ground-level ozone (O3) concentrations and its anthropogenic precursors. Ploiesti city, as one of the major urban area of Romania, is facing the same situation. This research aims to investigate spatial and temporal distribution characteristics of O3 in relationship with nitrogen oxides (NOx) using statistical analysis methods. Hourly O3 and NOx measurements were collected during 2014 year in Ploiesti. The results obtained showed that the ozone spatial distribution was non-normal for each month in 2014. The diurnal cycle of ground-level ozone concentrations showed a mid-day peak, while NOx diurnal variations presented 2 daily peaks, one in the morning (7:00 a.m.) and one in the afternoon (between 5:00 and 7:00 p.m.). In addition, it was observed a distinct pattern of weekly variations for O3 and NOx. Like in many other urban areas, the results indicated the presence of the �ozone weekend effect� in Ploiesti during the 2014 year, ozone concentrations being slightly higher on weekends compared to weekdays. For the same monitoring site, the nitrogen oxides were less prevalent on Saturdays and Sundays, probably due to reducing of road traffic and other pollution-generating activities on weekends than during the week.


Author(s):  
An Zhang ◽  
Jinhuang Lin ◽  
Wenhui Chen ◽  
Mingshui Lin ◽  
Chengcheng Lei

Long-term exposure to ozone pollution will cause severe threats to residents’ physical and mental health. Ground-level ozone is the most severe air pollutant in China’s Pearl River Delta Metropolitan Region (PRD). It is of great significance to accurately reveal the spatial–temporal distribution characteristics of ozone pollution exposure patterns. We used the daily maximum 8-h ozone concentration data from PRD’s 55 air quality monitoring stations in 2015 as input data. We used six models of STK and ordinary kriging (OK) for the simulation of ozone concentration. Then we chose a better ozone pollution prediction model to reveal the ozone exposure characteristics of the PRD in 2015. The results show that the Bilonick model (BM) model had the highest simulation precision for ozone in the six models for spatial–temporal kriging (STK) interpolation, and the STK model’s simulation prediction results are significantly better than the OK model. The annual average ozone concentrations in the PRD during 2015 showed a high spatial variation in the north and east and low in the south and west. Ozone concentrations were relatively high in summer and autumn and low in winter and spring. The center of gravity of ozone concentrations tended to migrate to the north and west before moving to the south and then finally migrating to the east. The ozone’s spatial autocorrelation was significant and showed a significant positive correlation, mainly showing high-high clustering and low-low clustering. The type of clustering undergoes temporal migration and conversion over the four seasons, with spatial autocorrelation during winter the most significant.


2021 ◽  
pp. 118654
Author(s):  
Tuanhui Wang ◽  
Lin Zhang ◽  
Shenghui Zhou ◽  
Tianning Zhang ◽  
Shiyan Zhai ◽  
...  

2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Nazatul Syadia Zainordin ◽  
Nor Azam Ramli ◽  
Ahmad Zia Ul-Saufie Mohamad ◽  
Muhammad Rizal Razman ◽  
Ahmad Shukri Yahya ◽  
...  

Increasing ground level ozone has become an important issue because of its adverse effects on health and the environment. Increasing numbers of vehicles is known to be one of the sources of its precursors where gas emissions from vehicle exhausts lead to the production of ground level ozone.  Active transports, mainly walking have been found to be the most effective way to reduce the use of private vehicles especially for short-distance travel.  In this study, pedestrians’ perspectives on the existence of environmental problems and awareness regarding negative effects of these issues and their perceptions towards changing the current mode to active mode were evaluated. According to the surveys conducted at the four selected schools, by referring to the gender, as compared to male respondents, female respondents mostly testified that there were local environmental problems occurred at their area and are aware  of the adverse effects of air pollutants exposed to human. As for types of respondents, teachers were much concern with the environmental problems as they spent more time in schools compared than other types of respondents. In terms of race, Indian and Malay respondents were more aware of the negative effects of air pollutants and most willingly to change from current mode to walking. From the analysis of one-way ANOVA and independent t-test, respondents’ level of agreement with environmental problems, awareness and potential in changing the current mode to walking were related to the gender, types of respondents and race. Nevertheless, factor of travel distance did not influence the given level of agreement by respondents.


2021 ◽  
Author(s):  
Sally Jahn ◽  
Elke Hertig

<p>Air pollution and heat events present two major health risks, both already independently posing a significant threat to human health and life. High levels of ground-level ozone (O<sub>3</sub>) and air temperature often coincide due to the underlying physical relationships between both variables. The most severe health outcome is in general associated with the co-occurrence of both hazards (e.g. Hertig et al. 2020), since concurrent elevated levels of temperature and ozone concentrations represent a twofold exposure and can lead to a risk beyond the sum of the individual effects. Consequently, in the current contribution, a compound approach considering both hazards simultaneously as so-called ozone-temperature (o-t-)events is chosen by jointly analyzing elevated ground-level ozone concentrations and air temperature levels in Europe.</p><p>Previous studies already point to the fact that the relationship of underlying synoptic and meteorological drivers with one or both of these health stressors as well as the correlation between both variables vary with the location of sites and seasons (e.g. Otero et al. 2016; Jahn, Hertig 2020). Therefore, a hierarchical clustering analysis is applied to objectively divide the study domain in regions of homogeneous, similar ground-level ozone and temperature characteristics (o-t-regions). Statistical models to assess the synoptic and large-scale meteorological mechanisms which represent main drivers of concurrent o-t-events are developed for each identified o-t-region.</p><p>Compound elevated ozone concentration and air temperature events are expected to become more frequent due to climate change in many parts of Europe (e.g. Jahn, Hertig 2020; Hertig 2020). Statistical projections of potential frequency shifts of compound o-t-events until the end of the twenty-first century are assessed using the output of Earth System Models (ESMs) from the sixth phase of the Coupled Model Intercomparison Project (CMIP6).</p><p><em>Hertig, E. (2020) Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany. Air Qual. Atmos. Health. doi: 10.1007/s11869-020-00811-z</em></p><p><em>Hertig, E., Russo, A., Trigo, R. (2020) Heat and ozone pollution waves in Central and South Europe- characteristics, weather types, and association with mortality. Atmosphere. doi: 10.3390/atmos11121271</em></p><p><em>Jahn, S., Hertig, E. (2020) Modeling and projecting health‐relevant combined ozone and temperature events in present and future Central European climate. Air Qual. Atmos. Health. doi: 10.1007/s11869‐020‐009610</em></p><p><em>Otero N., Sillmann J., Schnell J.L., Rust H.W., Butler T. (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett. doi: 10.1088/ 1748-9326/11/2/024005</em></p>


2021 ◽  
Author(s):  
Elke Hertig ◽  
Ana Russo ◽  
Ricardo Trigo

<p>Temperature extremes and air pollution pose a significant threat to human health. A specific concern applies to heat events and elevated ground-level ozone concentrations, due to the physical relationships between these variables, the single and combined effects of both variables on human health and the anticipated substantial changes in the scope of climate change.</p><p>The present contribution addresses relationships between air temperature and ground-level ozone, the association of these variables with atmospheric circulation patterns, the anticipated changes under future climate change as well as their association with human morbidity (i.e. myocardial infarction frequencies, Hertig et al. 2019) and mortality. The focus is on two climatically different regions in Europe, i.e., Bavaria (Central Europe) and Portugal (South Europe).</p><p>In general, a strong relationship between air temperature and ozone formation became evident. Due to the non-linear nature of the relationship, higher temperatures usually led to substantially enhanced ozone concentrations. In the scope of climate change, considerable increases of maximum temperatures were assessed for Bavaria until the end of the century. Also, future ozone concentrations were projected to rise (Hertig 2020). With respect to spell-length related extremes (heat waves and/ or ozone pollution waves), heat waves were identified as the most frequent wave type for the two European regions under investigation. Waves were associated with in-situ built-up as well as with advection of air masses. Despite different climate settings, a comparable exposure to heat and ozone waves was found in Central and South Europe. In view of excess mortality, the most severe impacts were always associated with compound heat-ozone waves (Hertig et al. 2020).</p><p>Research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project number 408057478.</p><p>Hertig, E., Russo, A., Trigo, R. (2020): Heat and ozone pollution waves in Central and South Europe- characteristics, weather types, and association with mortality. Atmosphere. doi: 10.3390/atmos11121271</p><p>Hertig, E. (2020): Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany. Air Quality, Atmosphere and Health. DOI: https://doi.org/10.1007/s11869-020-00811-z</p><p>Hertig, E., Schneider, A., Peters, A., von Scheidt, W., Kuch, B., Meisinger, Ch. (2019): Association of ground-level ozone, meteorological factors and weather types with daily myocardial infarction frequencies in Augsburg, Southern Germany. Atmos. Environment. DOI: 10.1016/j.atmosenv.2019.116975</p>


2012 ◽  
Vol 10 (2) ◽  
pp. 101-109
Author(s):  
Xie Xuxuan ◽  
Zhang Shiqiu ◽  
Xu Jianhua ◽  
Wu Dan ◽  
Zhu Tong

2020 ◽  
Author(s):  
Mengdi Song ◽  
Xin Li ◽  
Suding Yang ◽  
Xuena Yu ◽  
Shiyi Chen ◽  
...  

<p>Since 2015, the annual average ozone (O<sub>3</sub>) concentration in Chengdu has shown significant positive trends and reached a maximum of 55.2 ppb in 2018. By 2019, the annual average O<sub>3</sub> value has slightly decreased to 52.9 ppb, but it is still at the highest level in the Sichuan Basin. In order to illuminate VOCs characteristics, identify critical ozone precursors and explore potential sources during ozone pollution events in Chengdu plain, we performed a comprehensive field observation campaign from 9 August to 14 September 2019. During the campaign, the averaged O<sub>3</sub> concentration was 29.1 ppb, and mean values of ozone precursors NOx and TVOC were 14.9 ppb and 31.3 ppb, respectively. Two severe ozone pollution events occurred in Chengdu during the observation period. In ozone pollution event 1, the ratios of the average O<sub>3</sub>, NOx, NMHCs, and OVOCs concentration on the polluted days relative to the clean days were 4.1, 0.3, 0.6, and 1.4, respectively. In ozone pollution event 2, the ratios of the average O<sub>3</sub>, NOx, NMHCs, and OVOCs concentration on the polluted days relative to the clean days were 3.4, 0.4, 0.6 and 2.1, respectively. The difference of the ratios indicates that there are secondary conversions of NMHCs and NOx and secondary formation of O<sub>3</sub> and OVOCs during the pollution period. Isoprene, Acetaldehyde, Methyl Vinyl Ketone, m/p-Xylene and 1-Butene constitute a large fraction of the L<sub>OH</sub> during polluted days.  In this study, air mass cluster analysis, the potential source contribution function (PSCF), and positive matrix factorization (PMF) receptor models were used in combination to analyze the sources and potential source areas of VOCs during O3 pollution events.</p>


Sign in / Sign up

Export Citation Format

Share Document