scholarly journals Snow Surface Albedo Sensitivity to Black Carbon: Radiative Transfer Modelling

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1077
Author(s):  
Nicholas D. Beres ◽  
Magín Lapuerta ◽  
Francisco Cereceda-Balic ◽  
Hans Moosmüller

The broadband surface albedo of snow can greatly be reduced by the deposition of light-absorbing impurities, such as black carbon on or near its surface. Such a reduction increases the absorption of solar radiation and may initiate or accelerate snowmelt and snow albedo feedback. Coincident measurements of both black carbon concentration and broadband snow albedo may be difficult to obtain in field studies; however, using the relationship developed in this simple model sensitivity study, black carbon mass densities deposited can be estimated from changes in measured broadband snow albedo, and vice versa. Here, the relationship between the areal mass density of black carbon found near the snow surface to the amount of albedo reduction was investigated using the popular snow radiative transfer model Snow, Ice, and Aerosol Radiation (SNICAR). We found this relationship to be linear for realistic amounts of black carbon mass concentrations, such as those found in snow at remote locations. We applied this relationship to measurements of broadband albedo in the Chilean Andes to estimate how vehicular emissions contributed to black carbon (BC) deposition that was previously unquantified.

2022 ◽  
Vol 14 (2) ◽  
pp. 959
Author(s):  
Yanjiao Zheng ◽  
Lijuan Zhang ◽  
Wenliang Li ◽  
Fan Zhang ◽  
Xinyue Zhong

The amount of black carbon (BC) on snow surface can significantly reduce snow surface albedo in the visible-light range and change the surface radiative forcing effect. Therefore, it is key to study regional and global climate changes to understand the BC concentration on snow. In this study, we simulated the BC concentration on the surface snow of northeast China using an asymptotic radiative transfer model. From 2001 to 2016, the BC concentration showed no significant increase, with an average increase of 82.104 ng/g compared with that in the early 21st century. The concentration of BC in December was the largest (1344.588 ng/g) and decreased in January and February (1248.619 ng/g and 983.635 ng/g, respectively). The high black carbon content centers were concentrated in the eastern and central regions with dense populations and concentrated industries, with a concentration above 1200 ng/g, while the BC concentration in the southwest region with less human activities was the lowest (below 850 ng/g), which indicates that human activities played an important role in snow BC pollution. Notably, Heilongjiang province has the highest concentration, which may be related to its atmospheric stability in winter. These findings suggest that the BC pollution in northeast China has been aggravated from 2001 to 2016. It is estimated that the snow surface albedo will decrease by 16.448% due to the BC pollution of snow in northeast China. The problem of radiative forcing caused by black carbon to snow reflectivity cannot be ignored.


2021 ◽  
Author(s):  
Filippo Calì Quaglia ◽  
Daniela Meloni ◽  
Alcide Giorgio di Sarra ◽  
Tatiana Di Iorio ◽  
Virginia Ciardini ◽  
...  

<p>Extended and intense wildfires occurred in Northern Canada and, unexpectedly, on the Greenlandic West coast during summer 2017. The thick smoke plume emitted into the atmosphere was transported to the high Arctic, producing one of the largest impacts ever observed in the region. Evidence of Canadian and Greenlandic wildfires was recorded at the Thule High Arctic Atmospheric Observatory (THAAO, 76.5°N, 68.8°W, www.thuleatmos-it.it) by a suite of instruments managed by ENEA, INGV, Univ. of Florence, and NCAR. Ground-based observations of the radiation budget have allowed quantification of the surface radiative forcing at THAAO. </p><p>Excess biomass burning chemical tracers such as CO, HCN, H2CO, C2H6, and NH3 were  measured in the air column above Thule starting from August 19 until August 23. The aerosol optical depth (AOD) reached a peak value of about 0.9 on August 21, while an enhancement of wildfire compounds was  detected in PM10. The measured shortwave radiative forcing was -36.7 W/m2 at 78° solar zenith angle (SZA) for AOD=0.626.</p><p>MODTRAN6.0 radiative transfer model (Berk et al., 2014) was used to estimate the aerosol radiative effect and the heating rate profiles at 78° SZA. Measured temperature profiles, integrated water vapour, surface albedo, spectral AOD and aerosol extinction profiles from CALIOP onboard CALIPSO were used as model input. The peak  aerosol heating rate (+0.5 K/day) was  reached within the aerosol layer between 8 and 12 km, while the maximum radiative effect (-45.4 W/m2) is found at 3 km, below the largest aerosol layer.</p><p>The regional impact of the event that occurred on August 21 was investigated using a combination of atmospheric radiative transfer modelling with measurements of AOD and ground surface albedo from MODIS. The aerosol properties used in the radiative transfer model were constrained by in situ measurements from THAAO. Albedo data over the ocean have been obtained from Jin et al. (2004). Backward trajectories produced through HYSPLIT simulations (Stein et al., 2015) were also employed to trace biomass burning plumes.</p><p>The radiative forcing efficiency (RFE) over land and ocean was derived, finding values spanning from -3 W/m2 to -132 W/m2, depending on surface albedo and solar zenith angle. The fire plume covered a vast portion of the Arctic, with large values of the daily shortwave RF (< -50 W/m2) lasting for a few days. This large amount of aerosol is expected to influence cloud properties in the Arctic, producing significant indirect radiative effects.</p>


2017 ◽  
Vol 11 (6) ◽  
pp. 2867-2881 ◽  
Author(s):  
Amelia A. Marks ◽  
Maxim L. Lamare ◽  
Martin D. King

Abstract. Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices,  ∼  30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ∼  2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg−1 for four ices. Sea ices were generated with and without  ∼  5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm−1 (e-folding depths of 10–30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of  ∼  75,  ∼  150 and  ∼  300 ng g−1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).


2013 ◽  
Vol 7 (2) ◽  
pp. 943-973
Author(s):  
A. A. Marks ◽  
M. D. King

Abstract. Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-year sea ice and "dry" and "wet" snow types that suggest black carbon is the dominating absorbing impurity. The albedo response of first year and multi-year sea ice to increasing black carbon, from 1–1024 ng g−1, in a top 5 cm layer of a 155 cm thick sea ice was calculated using the radiative transfer model: TUV-snow. Sea ice albedo is surprisingly unresponsive to black carbon additions up to 100 ng g−1 with a decrease in albedo to 98.7% of the original albedo value due to an addition of 8 ng g−1 of black carbon in first year sea ice compared to an albedo decrease to 99.6% for the same black carbon mass ratio increase in multi-year sea ice. The first year sea ice proved more responsive to black carbon additions than the multi-year ice. Comparison with previous modelling of black carbon in sea ice suggests a more scattering sea ice environment will be less responsive to black carbon additions. Snow layers on sea ice may mitigate the effects of black carbon in sea ice. "Wet" and "dry" snow layers of 0.5, 1, 2, 5 and 10 cm were added onto the sea ice surface and the snow surface albedo calculated with the same increase in black carbon in the underlying sea ice. Just a 0.5 cm layer of snow greatly diminishes the effect of black carbon on surface albedo, and a 2–5 cm layer (less than half the e-folding depth of snow) is enough to "mask" any change in surface albedo owing to additional black carbon in sea ice, but not thick enough to ignore the underlying sea ice.


2019 ◽  
Vol 19 (15) ◽  
pp. 9949-9968 ◽  
Author(s):  
Wei Pu ◽  
Jiecan Cui ◽  
Tenglong Shi ◽  
Xuelei Zhang ◽  
Cenlin He ◽  
...  

Abstract. Light-absorbing particles (LAPs) deposited on snow can decrease snow albedo and affect climate through snow-albedo radiative forcing. In this study, we use MODIS observations combined with a snow-albedo model (SNICAR – Snow, Ice, and Aerosol Radiative) and a radiative transfer model (SBDART – Santa Barbara DISORT Atmospheric Radiative Transfer) to retrieve the instantaneous spectrally integrated radiative forcing at the surface by LAPs in snow (RFMODISLAPs) under clear-sky conditions at the time of MODIS Aqua overpass across northeastern China (NEC) in January–February from 2003 to 2017. RFMODISLAPs presents distinct spatial variability, with the minimum (22.3 W m−2) in western NEC and the maximum (64.6 W m−2) near industrial areas in central NEC. The regional mean RFMODISLAPs is ∼45.1±6.8 W m−2 in NEC. The positive (negative) uncertainties of retrieved RFMODISLAPs due to atmospheric correction range from 14 % to 57 % (−14 % to −47 %), and the uncertainty value basically decreases with the increased RFMODISLAPs. We attribute the variations of radiative forcing based on remote sensing and find that the spatial variance of RFMODISLAPs in NEC is 74.6 % due to LAPs and 21.2 % and 4.2 % due to snow grain size and solar zenith angle. Furthermore, based on multiple linear regression, the BC dry and wet deposition and snowfall could explain 84 % of the spatial variance of LAP contents, which confirms the reasonability of the spatial patterns of retrieved RFMODISLAPs in NEC. We validate RFMODISLAPs using in situ radiative forcing estimates. We find that the biases in RFMODISLAPs are negatively correlated with LAP concentrations and range from ∼5 % to ∼350 % in NEC.


2019 ◽  
Vol 76 (5) ◽  
pp. 1419-1436 ◽  
Author(s):  
Masanori Saito ◽  
Ping Yang ◽  
Norman G. Loeb ◽  
Seiji Kato

Abstract Snow albedo plays a critical role in the surface energy budget in snow-covered regions and is subject to large uncertainty due to variable physical and optical characteristics of snow. We develop an optically and microphysically consistent snow grain habit mixture (SGHM) model, aiming at an improved representation of bulk snow properties in conjunction with considering the particle size distribution, particle shape, and internally mixed black carbon (BC). Spectral snow albedos computed with two snow layers with the SGHM model implemented in an adding–doubling radiative transfer model agree with observations. Top-snow-layer optical properties essentially determine spectral snow albedo when the top-layer snow water equivalent (SWE) is large. When the top-layer SWE is less than 1 mm, the second-snow-layer optical properties have nonnegligible impacts on the albedo of the snow surface. Snow albedo enhancement with increasing solar zenith angle (SZA) largely depends on snow particle effective radius and also internally mixed BC. Based on the SGHM model and various sensitivity studies, single- and two-layer snow albedos are parameterized for six spectral bands used in NASA Langley Research Center’s modified Fu–Liou broadband radiative transfer model. Parameterized albedo is expressed as a function of snow particle effective radii of the two layers, SWE in the top layer, internally mixed BC mass fraction in both layers, and SZA. Both single-layer and two-layer parameterizations provide band-mean snow albedo consistent with rigorous calculations, achieving correlation coefficients close to 0.99 for all bands.


2020 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Marios-Bruno Korras-Carraca ◽  
Antonis Gkikas ◽  
Arlindo M. Da Silva ◽  
Christos Matsoukas ◽  
Nikolaos Hatzianastassiou ◽  
...  

The overarching goal of the current study is to quantify the aerosol-induced clear-sky direct radiative effects (DREs) within the Earth-atmosphere system at the global scale and for the 40-year period 1980–2019. To this aim, the MERRA-2 aerosol radiative properties, along with meteorological fields and surface albedo, are used as inputs to the Foundation for Research and Technology-Hellas (FORTH) radiative transfer model (RTM). Our preliminary results, representative for the year 2015, reveal strong surface radiative cooling (down to −45 Wm−2) over areas where high aerosol loadings and absorbing particles (i.e., dust and biomass burning) dominate. This reduction of the incoming solar radiation in the aforementioned regions is largely attributed to its absorption by the overlying suspended particles resulting in atmospheric warming reaching up to 40 Wm−2. At the top of the atmosphere (TOA), negative DREs (planetary cooling) are computed worldwide (down to −20 Wm−2) with few exceptions over bright surfaces (warming up to 5 Wm−2). Finally, the strong variations between the obtained DREs of different aerosol species (dust, sea salt, sulfate, and organic/black carbon) as well as between hemispheres and surface types (i.e., land vs. ocean) are also discussed.


Sign in / Sign up

Export Citation Format

Share Document