scholarly journals Monitoring Chlorofluorocarbons in Potential Source Regions in Eastern China

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1299
Author(s):  
Jiebo Zhen ◽  
Minmin Yang ◽  
Jie Zhou ◽  
Fengchun Yang ◽  
Tao Li ◽  
...  

Recent studies have indicated that Eastern China might be a potential source region of increased atmospheric chlorofluorocarbons (CFCs). To investigate this possibility, a field measurement was carried out from October to December 2017 for identifying the ambient concentration levels of representative trichlorofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12), trifluorotrichloroethane (CFC-113), and tetrafluorodichloroethane (CFC-114) at the residential and municipal solid waste (MSW) landfills and industrial sites in Eastern China. The ambient mixing ratios of CFCs at residential sites were almost within 20% enhancements of the global background sites. The highest levels of CFCs were observed at the MSW landfill sites. Moreover, CFC-11 and CFC-113 concentrations at MSW landfill, which was in service, were two times higher than that at completed MSW landfill. Mean concentrations of 322 pptv for CFC-11, 791 pptv for CFC-12, 91 pptv for CFC-113, and 16 pptv for CFC-114 at various industrial sites were higher than those at residential sites, but they were obviously lower than that at MSW landfill in use. A poor intercorrelation between the CFCs indicated that they did not come from the same source. Higher concentrations measured in this study compared with background sites indicates that MSW landfills could be an unintentional emission source and there are still substantial amounts of CFCs being stored in banks that may discharge CFCs into the atmosphere in Eastern China.

2010 ◽  
Vol 10 (4) ◽  
pp. 1671-1687 ◽  
Author(s):  
J.-D. Paris ◽  
A. Stohl ◽  
P. Ciais ◽  
P. Nédélec ◽  
B. D. Belan ◽  
...  

Abstract. We analysed results of three intensive aircraft campaigns above Siberia (April and September 2006, August 2007) with a total of ~70 h of continuous CO2, CO and O3 measurements. The flight route consists of consecutive ascents and descents between Novosibirsk (55° N, 82° E) and Yakutsk (62° N, 129° E). We performed retroplume calculations with the Lagrangian particle dispersion model FLEXPART for many short segments along the flight tracks. To reduce the extremely rich information on source regions provided by the model calculation into a small number of distinct cases, we performed a statistical clustering – to our knowledge for the first time – into potential source regions of the footprint emission sensitivities obtained from the model calculations. This technique not only worked well to separate source region influences but also resulted in clearly distinct tracer concentrations for the various clusters obtained. High CO and O3 concentrations were found associated with agricultural fire plumes originating from Kazakhstan in September 2006. A statistical analysis indicates that summer uptake of CO2 is largely explained (~50% of variance) by air mass exposure to uptake by Siberian and sub-arctic ecosystems. This resulted in an average 5 to 10 ppm difference with overlaying air masses. Stratosphere-troposphere exchange is found to strongly influence the observed O3 mixing ratios in spring, but not in summer. European emissions contributed to high O3 concentrations above Siberia in April 2006 and August 2007, while emissions from North Eastern China also contributed to higher O3 mixing ratios in summer, but tend to lower mixing ratios in spring, when the airmass aerosol burden is important. In the lower troposphere, large-scale deposition processes in the boreal and sub-arctic boundary layer is a large O3 sink, resulting in a ~20 ppb difference with overlaying air masses. Lagrangian footprint clustering is very promising and could also be advantageously applied to the interpretation of ground based measurements including calculation of tracers' sources and sinks.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Quanwei Zhao ◽  
Qing He ◽  
Lili Jin ◽  
Jianlin Wang

Reactive gases (O3, CO, NO2, and SO2) were collected hourly at the Akedala regional background station in northwestern China during September 2017 to August 2018. Wind rose, cluster analysis, potential source contribution function (PSCF), and concentration-weighted trajectory (CWT) methods were adopted for identifying the transport pathways and potential source regions of these atmosphere components at Akedala. The average O3, CO, NO2, and SO2 mixing ratios detected were 29.65 ± 11.44 ppb, 123.78 ± 73.35 ppb, 3.79 ± 0.98 ppb, and 4.59 ± 0.88 ppb during the observation period, and the statistical results of the monthly mean values revealed that there were differences during the highest pollution period, with O3 and CO mainly peaking in February, with mixing ratios of 38.03 ± 7.10 ppb and 208.50 ± 106.50 ppb, respectively. Meanwhile, NO2 peaked in March (4.51 ± 0.54 ppb) and SO2 in January (5.70 ± 1.92 ppb). The most obvious diurnal variation of CO and SO2 was observed in the winter, with maximum levels reaching between 13 : 00 and 14 : 00. The diurnal variations of O3 exhibited low values during the night and maximum values in the afternoon (16 : 00–18 : 00). Diurnal variation was not significant in the case of NO2. Cluster analysis showed that six main paths affected the Akedala atmosphere. In turn, the PSCF and CWT analysis results indicated that the Akedala reactive gas was affected by both local and foreign sources. The high PSCF value of the reactive gas potential source areas appeared in eastern Kazakhstan, northern Xinjiang, Western Mongolia, and Southern Russia. The WCWT (weighted concentration-weight trajectory) values of CO and SO2 in winter were the highest, totaling 180–240 ppb and 5–6.5 ppb, respectively. The WCWT value of O3 in the spring and summer was higher than that in the autumn and winter. The main source area of O3 was about 32–36 ppb in the spring and summer, and the main source area of NO2 in the summer had a low WCWT value of 3–3.5 ppb, whereas the NO2 WCWT value was concentrated at 4–4.5 ppb in the other seasons.


2021 ◽  
Vol 13 (5) ◽  
pp. 892
Author(s):  
Xiaomei Li ◽  
Pinhua Xie ◽  
Ang Li ◽  
Jin Xu ◽  
Zhaokun Hu ◽  
...  

This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.


Author(s):  
Norfazrin Mohd Hanif ◽  
Claire E. Reeves ◽  
David E. Oram ◽  
Matthew J. Ashfold ◽  
Marios Panagi ◽  
...  

2019 ◽  
Vol 10 (6) ◽  
pp. 1832-1842 ◽  
Author(s):  
Ashish Soni ◽  
Stefano Decesari ◽  
Vijay Shridhar ◽  
Vignesh Prabhu ◽  
Pooja Panwar ◽  
...  

1981 ◽  
Vol 86 (B7) ◽  
pp. 6261-6271 ◽  
Author(s):  
Edward Stolper ◽  
David Walker ◽  
Bradford H. Hager ◽  
James F. Hays

2010 ◽  
Author(s):  
M. Hilchenbach ◽  
R. Kallenbach ◽  
K. C. Hsieh ◽  
A. Czechowski ◽  
Jakobus le Roux ◽  
...  

2008 ◽  
Vol 8 (4) ◽  
pp. 15239-15289 ◽  
Author(s):  
D. Kubistin ◽  
H. Harder ◽  
M. Martinez ◽  
M. Rudolf ◽  
R. Sander ◽  
...  

Abstract. As a major source region of the hydroxyl radical OH, the Tropics largely control the oxidation capacity of the atmosphere on a global scale. However, emissions of hydrocarbons from the tropical rainforest that react rapidly with OH can potentially deplete the amount of OH and thereby reduce the oxidation capacity. The airborne GABRIEL field campaign in equatorial South America (Suriname) in October 2005 investigated the influence of the tropical rainforest on the HOx budget (HOx=OH+HO2). The first observations of OH and HO2 over a tropical rainforest are compared to steady state concentrations calculated with the atmospheric chemistry box model MECCA. The important precursors and sinks for HOx chemistry, measured during the campaign, are used as constraining parameters for the simulation of OH and HO2. Significant underestimations of HOx are found by the model over land during the afternoon, with mean ratios of observation to model of 12.2±3.5 and 4.1±1.4 for OH and HO2, respectively. The discrepancy between measurements and simulation results is correlated to the abundance of isoprene. While for low isoprene mixing ratios (above ocean or at altitudes >3 km), observation and simulation agree fairly well, for mixing ratios >200 pptV (<3 km over the rainforest) the model tends to underestimate the HOx observations as a function of isoprene. Box model simulations have been performed with the condensed chemical mechanism of MECCA and with the detailed isoprene reaction scheme of MCM, resulting in similar results for HOx concentrations. Simulations with constrained HO2 concentrations show that the conversion from HO2 to OH in the model is too low. However, by neglecting the isoprene chemistry in the model, observations and simulations agree much better. An OH source similar to the strength of the OH sink via isoprene chemistry is needed in the model to resolve the discrepancy. A possible explanation is that the oxidation of isoprene by OH not only dominates the removal of OH but also produces it in a similar amount. Several additional reactions which directly produce OH have been implemented into the box model, suggesting that upper limits in producing OH are still not able to reproduce the observations (improvement by factors of ≈2.4 and ≈2 for OH and HO2, respectively). We determine that OH has to be recycled to 94% instead of the simulated 38% to match the observations, which is most likely to happen in the isoprene degradation process, otherwise additional sources are required.


2018 ◽  
Author(s):  
Paul Herenz ◽  
Heike Wex ◽  
Alexander Mangold ◽  
Quentin Laffineur ◽  
Irina V. Gorodestkaya ◽  
...  

Abstract. For three austral summer seasons (2013–2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE), in Dronning Maud Land in East Antarctica were characterized in terms of number concentrations of total aerosol particles (NCN) and cloud condensation nuclei (NCCN), the particle number size distribution (PNSD), the aerosol particle hygroscopicity and the influence of the air mass origin on NCN and NCCN. In general NCN was found to range from 40 to 6700 cm−3 with a median of 333 cm−3, while NCCN was found to cover a range between less than 10 and 1300 cm−3 for supersaturations (SS) between 0.1 and 0.7 %. It is shown that the aerosol is Aitken mode dominated and is characterized by a significant amount of freshly, secondarily formed aerosol particles, with 94 % and 36 % of the aerosol particles are smaller than 90 nm and &amp;approx; 35 nm, respectively. Measurements of the basic meteorological parameters as well as the history of the air masses arriving at the measurement station indicate that the station is influenced by both, continental air masses originating from the Antarctic inland ice sheet (continental events – CE) and marine air masses originating from the Southern Ocean (marine events – ME). CEs came along with rather constant NCN and NCCN values, which we denote to be Antarctic continental background concentrations. MEs however cause large fluctuations in NCN and NCCN caused by scavenging due to precipitation or new particle formation based on marine precursors. The application of Hysplit back trajectories in form of the potential source contribution function (PSCF) analysis indicate, that the region of the Southern Ocean is a potential source of Aitken mode particles. For particles larger than &amp;approx; 110 nm (CCN measured at SS of 0.1 %) the Antarctic ice shelf regions were found to be a potential source region, most likely due to the emission of sea salt aerosol particles, released from snow particles from surface snow layers by sublimation, e.g., during periods of high wind speed, leading to drifting or blowing snow. On the basis of the PNSDs and NCCN, the critical diameter for cloud droplet activation and the aerosol particle hygroscopicity parameter κ were determined to be 110 nm and 1, respectively, for a SS of 0.1 %. The region of the Antarctic inland plateau however was not found to feature a significant source region for CN and CCN measured at the PE station in austral summer.


Sign in / Sign up

Export Citation Format

Share Document