scholarly journals Quantification of Regional Ozone Pollution Characteristics and Its Temporal Evolution: Insights from Identification of the Impacts of Meteorological Conditions and Emissions

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 279
Author(s):  
Leifeng Yang ◽  
Danping Xie ◽  
Zibing Yuan ◽  
Zhijiong Huang ◽  
Haibo Wu ◽  
...  

Ozone (O3) pollution has become the major new challenge after the suppression of PM2.5 to levels below the standard for the Pearl River Delta (PRD). O3 can be transported between nearby stations due to its longevity, leading stations with a similar concentration in a state of aggregation, which is an alleged regional issue. Investigations in such regional characteristics were rarely involved ever. In this study, the aggregation (reflected by the global Moran’s I index, GM), its temporal evolution, and the impacts from meteorological conditions and both local (i.e., produced within the PRD) and non-local (i.e., transported from outside the PRD) contributions were explored by spatial analysis and statistical modeling based on observation data. The results from 2007 to 2018 showed that the GM was positive overall, implying that the monitoring stations were surrounded by stations with similar ozone levels, especially during ozone seasons. State of aggregation was reinforced from 2007 to 2012, and remained stable thereafter. Further investigations revealed that GM values were independent of meteorological conditions, while closely related to local and non-local contributions, and its temporal variations were driven only by local contributions. Then, the correlation (R2) between O3 and meteorology was identified. Result demonstrated that the westerly belonged to temperature (T) and surface solar radiation (SSR) sensitive regions and the correlation between ozone and the two became intense with time. Relative humidity (RH) showed a negative correlation with ozone in most areas and periods, whereas correlations with u and v were positive for northerly winds and negative for southerly winds. Two important key points of such investigation are that, firstly, we defined the features of ozone pollution by characterizing the temporal variations in spatial discrepancies among all stations, secondly, we highlighted the significance of subregional cooperation within the PRD and regional cooperation with external environmental organizations.

2021 ◽  
Vol 13 (15) ◽  
pp. 8537
Author(s):  
Yuanyuan Mao ◽  
Lingli Hou ◽  
Zhengdong Zhang

Since the beginning of the 21st century, urbanization has brought about dramatic changes in population, life, and economy, while having a significant impact on the distribution of ecosystem service. As research on the relationship between urbanization and ecosystem service has gradually specified, we decided to explore it at different scales. In this paper, we quantified and mapped the spatial–temporal evolution and relationship between urbanization and ecosystem service value in the Pearl River Delta Urban Agglomeration from 2000 to 2019 based on a dual-scale perspective of county and 3 km × 3 km raster. Our results show that the overall trend of urbanization level and ecosystem service value was increasing. Urbanization and ecosystem service value at the county scale showed a negative spatial correlation, while it was not significant at the raster scale. The “high–high” agglomeration was more concentrated, while the other three “low–low”, “low–high” and “high–low” agglomerations were more dispersed. Our findings suggest it is crucial to identify the key factors of small urban areas to grasp the development mechanism in the urbanization process and maintain the balance of the ecosystem.


2020 ◽  
Vol 13 (1) ◽  
pp. 88
Author(s):  
Hejin Fang ◽  
Wenmin Qin ◽  
Lunche Wang ◽  
Ming Zhang ◽  
Xuefang Yang

Surface solar radiation (SSR) is the main factor affecting the earth’s climate and environment and its variations and the reason for these variations are an important part of climate change research. In this research, we investigated the long-term variations of SSR during 1984–2016 and the quantitative influences of atmospheric aerosols, anthropogenic emissions, and meteorological conditions on SSR over China’s mainland. The results show the following: (1) The annual average SSR values had a decline trend at a rate of −0.371 Wm−2 yr−1 from 1984 to 2016 over China. (2) The aerosol optical depth (AOD) plays the main role in inducing variations in SSR over China, with r values of −0.75. Moreover, there are marked regional differences in the influence of anthropogenic emissions and meteorological conditions on SSR trends. (3) From a regional perspective, AOD is the main influencing factor on SSR in northeast China (NEC), Yunnan Plateau and surrounding regions (YPS), North China (NC), and Loess Plateau (LP), with r values of −0.65, −0.60, −0.89, and −0.50, respectively. However, the main driving factors for SSR in northwest China (NWC) are “in cloud optical thickness of all clouds” (TAUTOT) (−0.26) and black carbon (BC) anthropogenic emissions (−0.21). TAUTOT (−0.39) and total precipitable water vapor (TQV) (−0.29) are the main influencing factors of SSR in the middle-lower Yangtze Plain (MYP). The main factors that influence SSR in southern China (SC) are surface pressure (PS) (−0.66) and AOD (−0.43). This research provides insights in understanding the variations of SSR and its relationships with anthropogenic conditions and meteorological factors.


2020 ◽  
Vol 226 ◽  
pp. 117392 ◽  
Author(s):  
Xianyu Yang ◽  
Kai Wu ◽  
Haolin Wang ◽  
Yiming Liu ◽  
Shan Gu ◽  
...  

2021 ◽  
Author(s):  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Bruno Franco ◽  
Mark A Sutton ◽  
Jan Willem Erisman ◽  
...  

<p>The Infrared Atmospheric Sounding Interferometer (IASI) mission consists of a suite of three infrared sounders providing today over 13 years of consistent global measurements (from end of 2007 up to now). In this work we use the recently developed version 3 of the IASI NH<sub>3</sub> dataset to derive global, regional and national trends from 2008 to 2018. Reported national trends are analysed in the light of changing anthropogenic and pyrogenic NH<sub>3</sub> emissions, meteorological conditions and the impact of sulphur and nitrogen oxides emissions. A case study is dedicated to the Netherlands. Temporal variation on shorter timescales will also be investigated.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1148
Author(s):  
Alexander Starchenko ◽  
Elena Shelmina ◽  
Lubov Kizhner

This paper presents the simulation results of meteorological and air quality parameters for the Siberian city of Tomsk predicted by mesoscale meteorological and chemical transport models. Changes in the numerically predicted wind velocity fields, temperature, and concentration of major air pollutants were modelled in detail for the selected dates, when anticyclonic weather with cloud free and calm wind conditions was observed in Tomsk. The simulation results have shown that stable or neutral atmospheric stratification with light wind and low ambient air temperature (−30, −20 °C) are the most unfavorable meteorological conditions leading to the near surface pollutants accumulation. The numerical calculation results were compared with observation data from the Joint Use Center (JUC) “Atmosphere” of V.E. Zuev Institute of Atmospheric Optics (IAO) and showed good agreement.


2017 ◽  
Vol 56 (5) ◽  
pp. 1209-1229 ◽  
Author(s):  
Jianqiong Zhan ◽  
Wenyuan Chang ◽  
Wei Li ◽  
Yanming Wang ◽  
Liqi Chen ◽  
...  

AbstractFujian Province in southeastern coastal China is a relatively clean region with low emissions, as its high altitude isolates it from the rest of the country. However, the region experienced haze episodes on 3–14 December 2013. The authors performed simulations using the Weather Research and Forecasting Model coupled with chemistry (WRF-Chem) to examine the impacts of meteorological conditions, aerosol radiative feedbacks (ARFs; including aerosol direct and nearly first indirect effect), and internal and external emissions reduction scenarios on particulate matter smaller than 2.5 μm (PM2.5) concentrations. To the best of the authors’ knowledge, this is the first time the WRF-Chem model has been used to study air quality in this region. The model reasonably reproduced the meteorological conditions and PM2.5 concentrations. The analysis demonstrated that the highest-PM2.5 event was associated with a cold surge that promoted the impingement of northern pollutants on the region, and PM2.5 concentrations were sensitive to the emissions from the Yangtze River delta (16.6%) and the North China Plain (12.1%). This suggests that efforts toward coastal air quality improvement require regional cooperation to reduce emissions. Noticeably, ARFs were unlikely to increase PM2.5 concentrations in the coastal region, which was in contrast to the case in northern China. ARFs induced strong clean wind anomalies in the coastal region and also lowered the inland planetary boundary layer, which enhanced the blocking of northern pollutants crossing the high terrain in the north of Fujian Province. This indicates that ARFs tend to weaken the haze intensity in the southeastern coastal region.


2020 ◽  
Author(s):  
aiping huang

<p>Lake eutrophication is a key point in water environmental problems in the world. Spatiotemporal variations of nutrients and chlorophyll-a and eutrophication index in Poyang Lake, the largest freshwater lake in China, are analyzed in this paper basing on field observation data at 17 sampling points from 2011 to 2016. The results show that nutrient concentrations have obvious seasonality characteristics and present bigger values in the low water period than the high water period. The peak value of chlorophyll-a concentration appears in July and October respectively. As a whole, the eutrophication index in the low water period is higher than the high water period, and the maximum value is found in October which mainly due to the high chlorophyll-a concentration. Poyang Lake is at light eutrophication level from 2011 to 2012, and mesotrophic from 2013 to 2016. From the perspective of space, nutrient concentrations in the southern part of the lake is higher than the northern part in general, and chlorophyll-a and eutrophication index show the similar law. This paper makes a quantitative analysis for spatial and temporal variations of eutrophication which benefit the water management especially water pollution control in Poyang Lake</p>


2013 ◽  
Vol 52 (4) ◽  
pp. 953-973 ◽  
Author(s):  
John A. Mayfield ◽  
Gilberto J. Fochesatto

AbstractThe high-latitude winter atmospheric boundary layer of interior Alaska continually exhibits a complex layered structure as a result of extreme meteorological conditions. In this paper the occurrence of elevated inversions (EI), surface-based inversions (SBI), and stratified layers in the sub-Arctic from January 2000 to December 2009 is reported. This statistical analysis is based on radiosonde observation data from the Fairbanks National Weather Service station complemented by Winter Boundary Layer Experiment observations in the period 2010–11. This study found that SBIs occurred 64% of the time. An SBI occurred in combination with one, two, three, or four simultaneous EIs 84.86%, 48.49%, 21.23%, and 7.99% of the time, respectively, in 2326 total cases. The calculated mean SBI height was 377 m; EIs occurred at 1231, 2125, 2720, and 3125 m, respectively. This analysis was able to discriminate between locally controlled inversion layers and synoptic-dependent inversions and to identify their formation mechanisms. It was found that, in the presence of an SBI layer, the first EI layer formed 35.8% of the time under anticyclonic conditions at a mean height of 1249 m and 22% of the time in warm-air-advection situations at a mean height of 1049 m. The remaining 23.4% resulted from combined synoptic situations, and 18.8% were unclassified.


Sign in / Sign up

Export Citation Format

Share Document