scholarly journals Spatiotemporal Characteristics of Drought in the North China Plain over the Past 58 Years

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 844
Author(s):  
Yanqiang Cui ◽  
Bo Zhang ◽  
Hao Huang ◽  
Jianjun Zeng ◽  
Xiaodan Wang ◽  
...  

Understanding the spatiotemporal characteristics of regional drought is of great significance in decision-making processes such as water resources and agricultural systems management. The North China Plain is an important grain production base in China and the most drought-prone region in the country. In this study, the monthly standardized precipitation evapotranspiration index (SPEI) was used to monitor the spatiotemporal variation of agricultural drought in the North China Plain from 1960 to 2017. Seven spatial patterns of drought variability were identified in the North China Plain, such as Huang-Huai Plain, Lower Yangtze River Plain, Haihe Plain, Shandong Hills, Qinling Mountains Margin area, Huangshan Mountain surroundings, and Yanshan Mountain margin area. The spatial models showed different trends in different time stages, indicating that the drought conditions in the North China Plain were complex and changeable in the past 58 years. As an important agricultural area, the North China Plain needs more attention since this region shows a remarkable trend of drought and, as such, will definitely increase the water demand for agricultural irrigation. The strong correlation between these spatial distribution patterns indicates that the climate and weather conditions leading to drought are consistent and that drought conditions are independent for regions that are not correlated. If this trend continues, the characteristics of drought variability in the North China Plain will become more complex, and a more detailed water management strategy will be needed to address the effects of drought on agro-ecosystems. Recognizing the drought variability in the North China Plain can provide a basis for agricultural disaster reduction planning and water resources allocation.

2019 ◽  
Vol 58 (12) ◽  
pp. 2605-2615
Author(s):  
Qi Hu ◽  
Xueqing Ma ◽  
Xuebiao Pan ◽  
Huang Binxiang

AbstractClimate warming in the North China Plain (NCP) is expected to greatly affect corn production. On the basis of a comprehensive consideration of the double-cropping system, we investigated the impacts of climate warming in the past 55 years on the planting boundaries and areas of varieties of summer corn with different maturity levels. In addition, we tried to explore the probable reasons for the changes in planting boundaries. Climate warming caused a northward shift in the planting boundaries of summer corn, resulting in the expansion of the total planting area. However, the trend for the planting area of each belt of corn maturity was not always consistent. Because of the advanced planting date and delayed physiological maturation date, the growing season of corn in the NCP has been prolonged in the past 55 years. Climate warming also increased the active accumulated temperature with a threshold of 10° (AAT10) during the corn growing season by 73.2°C decade−1, which was mainly caused by the increase in the number of days with a daily temperature over 10°C. In summary, the planting boundaries of varieties of summer corn with different maturity levels have greatly changed due to climate change, and corn production in the NCP could benefit from climate warming through the greater planting area and longer growing season.


2014 ◽  
Vol 14 (11) ◽  
pp. 16123-16149 ◽  
Author(s):  
G. Q. Fu ◽  
W. Y. Xu ◽  
R. F. Rong ◽  
J. B. Li ◽  
C. S. Zhao

Abstract. Frequent low visibility, haze and fog events were found in the North China Plain (NCP). Data throughout the NCP during the past 30 years were examined to determine the horizontal distribution and decadal trends of low visibility, haze and fog events. The impact of meteorological factors such as wind and RH on those events was investigated. Results reveal distinct distributions of haze and fog days, due to their different formation mechanisms. Low visibility, haze and fog days all display increasing trends of before 1995, a steady stage during 1995–2003 and a drastically drop thereafter. All three events occurred most frequently during the heating season. Benefiting from emission control measures, haze and fog both show decreasing trends in winter during the past 3 decades, while summertime haze displays continuous increasing trends. The distribution of wind speed and wind direction as well as the topography within the NCP has determinative impacts on the distribution of haze and fog. Weakened south-easterly winds in the southern part of the NCP has resulted in high pollutant concentrations and frequent haze events along the foot of the Taihang Mountains. The orographic wind convergence zone in the central band area of the southern NCP is responsible for the frequent fog events in this region. Wind speed has been decreasing throughout the entire southern NCP, resulting in more stable atmospheric conditions and weaker dispersion abilities, calling for harder efforts to control emissions to prevent haze events. Haze events are strongly influenced by the ambient RH. RH values associated with haze days are evidently increasing, suggesting that an increasing fraction of haze events are caused by the hygroscopic growth of aerosols, rather than simply by high aerosol loadings.


Sign in / Sign up

Export Citation Format

Share Document