Spatiotemporal evolution characteristics of land subsidence caused by groundwater depletion in the North China Plain during the past six decades

2021 ◽  
pp. 126678
Author(s):  
Guangli Su ◽  
Yanqiang Wu ◽  
Wei Zhan ◽  
Zhijiang Zheng ◽  
Liu Chang ◽  
...  
2020 ◽  
Vol 12 (21) ◽  
pp. 3579
Author(s):  
Min Shi ◽  
Huili Gong ◽  
Mingliang Gao ◽  
Beibei Chen ◽  
Shunkang Zhang ◽  
...  

Groundwater resources have been exploited and utilized on a large scale in the North China Plain (NCP) since the 1970s. As a result of extensive groundwater depletion, the NCP has experienced significant land subsidence, which threatens geological stability and infrastructure health and exacerbates the risks of other geohazards. In this study, we employed multi-track Synthetic Aperture Radar (SAR) datasets acquired by the Sentinel-1A (S1A) satellite to detect spatial and temporal distributions of surface deformation in the NCP from 2016 to 2018 based on multi-temporal interferometric synthetic aperture radar (MT-InSAR). The results show that the overall ground displacement ranged from −165.4 mm/yr (subsidence) to 9.9 mm/yr (uplift) with a standard variance of 28.8 mm/yr. During the InSAR monitoring period, the temporal pattern of land subsidence was dominated by a decreasing tendency and the spatial pattern of land subsidence in the coastal plain exhibited an expansion trend. Validation results show that the S1A datasets agree well with levelling data, indicating the reliability of the InSAR results. With groundwater level data, we found that the distribution of subsidence in the NCP is spatially consistent with that of deep groundwater depression cones. A comparison with land use data shows that the agricultural usage of groundwater is the dominant mechanism responsible for land subsidence in the whole study area. Through an integrated analysis of land subsidence distribution characteristics, geological data, and previous research results, we found that other triggering factors, such as active faults, precipitation recharge, urbanization, and oil/gas extraction, have also impacted land subsidence in the NCP to different degrees.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Peifang Leng ◽  
Fadong Li ◽  
Kun Du ◽  
Zhao Li ◽  
Congke Gu ◽  
...  

Abstract Background Groundwater is typically over-saturated in CO2 with respect to atmospheric equilibrium. Irrigation with groundwater is a common agricultural practice in many countries, but little is known about the fate of dissolved inorganic carbon (DIC) in irrigation groundwater and its contribution to the CO2 emission inventory from land to the atmosphere. We performed a mesocosm experiment to study the fate of DIC entering agricultural drainage channels in the North China Plain. Specifically, we aimed to unravel the effect of flow velocity and nutrient on CO2 emissions. Results All treatments were emitting CO2. Approximately half of the DIC in the water was consumed by TOC production (1–16%), emitted to the atmosphere (14–20%), or precipitated as calcite (CaCO3) (14–20%). We found that DIC depletion was stimulated by nutrient addition, whereas more CO2 evasion occurred in the treatments without nutrients addition. On the other hand, about 50% of CO2 was emitted within the first 50 h under high flow velocity. Thus, in the short term, high nutrient levels may counteract CO2 emissions from drainage channels, whereas the final fate of the produced biomass (burial versus mineralization to CO2 or even CH4) determines the duration of the effect. Conclusion Our study reveals that both hydrology and biological processes affect CO2 emissions from groundwater irrigation channels. The estimated CO2 emission from total groundwater depletion in the North China Plain is up to 0.52 ± 0.07 Mt CO2 year−1. Thus, CO2 emissions from groundwater irrigation should be considered in regional CO2 budgets, especially given that groundwater depletion is expected to acceleration in the future.


2019 ◽  
Vol 29 (6) ◽  
pp. 891-908 ◽  
Author(s):  
Xifang Wu ◽  
Yongqing Qi ◽  
Yanjun Shen ◽  
Wei Yang ◽  
Yucui Zhang ◽  
...  

2019 ◽  
Vol 58 (12) ◽  
pp. 2605-2615
Author(s):  
Qi Hu ◽  
Xueqing Ma ◽  
Xuebiao Pan ◽  
Huang Binxiang

AbstractClimate warming in the North China Plain (NCP) is expected to greatly affect corn production. On the basis of a comprehensive consideration of the double-cropping system, we investigated the impacts of climate warming in the past 55 years on the planting boundaries and areas of varieties of summer corn with different maturity levels. In addition, we tried to explore the probable reasons for the changes in planting boundaries. Climate warming caused a northward shift in the planting boundaries of summer corn, resulting in the expansion of the total planting area. However, the trend for the planting area of each belt of corn maturity was not always consistent. Because of the advanced planting date and delayed physiological maturation date, the growing season of corn in the NCP has been prolonged in the past 55 years. Climate warming also increased the active accumulated temperature with a threshold of 10° (AAT10) during the corn growing season by 73.2°C decade−1, which was mainly caused by the increase in the number of days with a daily temperature over 10°C. In summary, the planting boundaries of varieties of summer corn with different maturity levels have greatly changed due to climate change, and corn production in the NCP could benefit from climate warming through the greater planting area and longer growing season.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 844
Author(s):  
Yanqiang Cui ◽  
Bo Zhang ◽  
Hao Huang ◽  
Jianjun Zeng ◽  
Xiaodan Wang ◽  
...  

Understanding the spatiotemporal characteristics of regional drought is of great significance in decision-making processes such as water resources and agricultural systems management. The North China Plain is an important grain production base in China and the most drought-prone region in the country. In this study, the monthly standardized precipitation evapotranspiration index (SPEI) was used to monitor the spatiotemporal variation of agricultural drought in the North China Plain from 1960 to 2017. Seven spatial patterns of drought variability were identified in the North China Plain, such as Huang-Huai Plain, Lower Yangtze River Plain, Haihe Plain, Shandong Hills, Qinling Mountains Margin area, Huangshan Mountain surroundings, and Yanshan Mountain margin area. The spatial models showed different trends in different time stages, indicating that the drought conditions in the North China Plain were complex and changeable in the past 58 years. As an important agricultural area, the North China Plain needs more attention since this region shows a remarkable trend of drought and, as such, will definitely increase the water demand for agricultural irrigation. The strong correlation between these spatial distribution patterns indicates that the climate and weather conditions leading to drought are consistent and that drought conditions are independent for regions that are not correlated. If this trend continues, the characteristics of drought variability in the North China Plain will become more complex, and a more detailed water management strategy will be needed to address the effects of drought on agro-ecosystems. Recognizing the drought variability in the North China Plain can provide a basis for agricultural disaster reduction planning and water resources allocation.


Sign in / Sign up

Export Citation Format

Share Document