scholarly journals Spatial and Temporal Variation of NO2 Vertical Column Densities (VCDs) over Poland: Comparison of the Sentinel-5P TROPOMI Observations and the GEM-AQ Model Simulations

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 896
Author(s):  
Marcin Kawka ◽  
Joanna Struzewska ◽  
Jacek W. Kaminski

The TROPOMI instrument aboard Sentinel-5P is a relatively new, high-resolution source of information about atmosphere composition. One of the primary atmospheric trace gases that we can observe is nitrogen dioxide. Thanks to TROPOMI capabilities (high resolution and short revisit time), one can describe regional and seasonal NO2 concentration patterns. Thus far, such patterns have been analysed by either ground measurements (which have been limited to specific locations and only to the near-surface troposphere layer) or numerical models. This paper compares the TROPOMI and GEM-AQ derived vertical column densities (VCD) over Poland, focusing on large point sources. Although well established in atmospheric science, the GEM-AQ simulations are always based on emission data, which in the case of the energy sector were reported by stack operators. In addition, we checked how cloudy conditions influence TROPOMI results. Finally, we tried to link the NO2 column number densities with surface concentration using boundary layer height as an additional explanatory variable. Our results showed a general underestimation of NO2 tropospheric column number density by the GEM-AQ model (compared to the TROPOMI). However, for the locations of the most significant point sources, we noticed a systematic overestimation by the GEM-AQ model (excluding spring and summer months when TROPOMI presents larger NO2 VCDs than GEM-AQ). For the winter months, we have found TROPOMI NO2 VCD results highly dependent on the choice of qa_value threshold.

Author(s):  
Marcin Kawka ◽  
Joanna Strużewska ◽  
Jacek Kamiński

TRPOMI instrument aboard Sentinel-5P is a relatively new, high-resolution source of information about atmosphere composition. One of the primary atmospheric trace gases that we can observe through it is nitrogen dioxide. By now, we were using the chemical weather model (GEM-AQ) as a mean for estimating nitrogen dioxide concentration on a regional scale. Although well established in atmospheric science, the GEM-AQ simulations were always based on emission data, which in the case of the energy sector were reported by stack owners. In this paper, we attempted to compare the TROPOMI and GEM-AQ derived VCDs over Poland with a particular focus on large point emitters. We also checked how cloudy conditions influence TROPOMI results. Finally, we tried to link the NO2 column number densities with surface concentration using boundary layer height as an additional explanatory variable


Author(s):  
Marcin Kawka ◽  
Joanna Strużewska ◽  
Jacek Kamiński

TRPOMI instrument aboard Sentinel-5P is a relatively new, high-resolution source of information about atmosphere composition. One of the primary atmospheric trace gases that we can observe through it is nitrogen dioxide. By now, we were using the chemical weather model (GEM-AQ) as a mean for estimating nitrogen dioxide concentration on a regional scale. Although well established in atmospheric science, the GEM-AQ simulations were always based on emission data, which in the case of the energy sector were reported by stack owners. In this paper, we attempted to compare the TROPOMI and GEM-AQ derived VCDs over Poland with a particular focus on large point emitters. We also checked how cloudy conditions influence TROPOMI results. Finally, we tried to link the NO2 column number densities with surface concentration using boundary layer height as an additional explanatory variable


2014 ◽  
Vol 14 (20) ◽  
pp. 10963-10976 ◽  
Author(s):  
J. J. P. Kuenen ◽  
A. J. H. Visschedijk ◽  
M. Jozwicka ◽  
H. A. C. Denier van der Gon

Abstract. Emissions to air are reported by countries to EMEP. The emissions data are used for country compliance checking with EU emission ceilings and associated emission reductions. The emissions data are also necessary as input for air quality modelling. The quality of these "official" emissions varies across Europe. As alternative to these official emissions, a spatially explicit high-resolution emission inventory (7 × 7 km) for UNECE-Europe for all years between 2003 and 2009 for the main air pollutants was made. The primary goal was to supply air quality modellers with the input they need. The inventory was constructed by using the reported emission national totals by sector where the quality is sufficient. The reported data were analysed by sector in detail, and completed with alternative emission estimates as needed. This resulted in a complete emission inventory for all countries. For particulate matter, for each source emissions have been split in coarse and fine particulate matter, and further disaggregated to EC, OC, SO4, Na and other minerals using fractions based on the literature. Doing this at the most detailed sectoral level in the database implies that a consistent set was obtained across Europe. This allows better comparisons with observational data which can, through feedback, help to further identify uncertain sources and/or support emission inventory improvements for this highly uncertain pollutant. The resulting emission data set was spatially distributed consistently across all countries by using proxy parameters. Point sources were spatially distributed using the specific location of the point source. The spatial distribution for the point sources was made year-specific. The TNO-MACC_II is an update of the TNO-MACC emission data set. Major updates included the time extension towards 2009, use of the latest available reported data (including updates and corrections made until early 2012) and updates in distribution maps.


2021 ◽  
Author(s):  
Vinod Kumar ◽  
Julia Remmers ◽  
Steffen Beirle ◽  
Astrid Kerkweg ◽  
Jos Lelieveld ◽  
...  

<p>Regional atmospheric chemistry models are adopted for simulating concentrations of atmospheric components at high resolution and quantifying the impact of localized emissions (e.g. industrial and urban clusters) on the non-linear chemical processes, e.g. ozone production. However, their evaluation is challenging due to the limited availability of high spatiotemporally resolved reference datasets. For the same reason, the vertical distribution of pollutants simulated by the model is especially arduous to assess.</p><p>Here, we present regional atmospheric chemistry model studies with spatial resolution up to 2.2 × 2.2 km<sup>2</sup> focused around Germany for May 2018 using the MECO(n) model system. Using a network of surface concentration measurements at background, near traffic and industrial locations, we evaluate the spatial distribution of NO<sub>2</sub> simulated by the model. The highly resolved model together with a comparable resolution and up-to-date input emissions inventory, was found to perform best in reproducing the spatial distribution of NO<sub>2</sub> surface volume mixing ratios (VMRs). We propose a computationally efficient approach to account for the diurnal and day of the week variability of input anthropogenic emissions (e.g. from road transport), which proved to be crucial for resolving the temporal variability of NO<sub>2</sub> surface VMRs.</p><p>The simulated NO<sub>2</sub> tropospheric vertical column densities were evaluated by employing the measurements of a 4-azimuth MAX-DOAS instrument in Mainz. Generally, such comparisons do not account for the spatial sensitivity volume of the MAX-DOAS measurements, the change of sensitivity within this volume and the spatial heterogeneity of NO<sub>2</sub>. We therefore apply a consistent approach of comparison of the differential slant column densities (dSCDs), which overcomes these limitations. Moreover, the dSCDs are obtained for several elevation and azimuth angles, which are characterized by distinctive sensitivity for different vertical levels within the boundary layer and different horizontal representativeness. Hence, also an evaluation of the model in simulating the vertical distribution of NO<sub>2</sub> can be performed with this approach using continuous MAX-DOAS measurements spanning long time periods. We found that the model performs well with respect to the measured dSCDs at low elevation angles (< 8°) with an overall bias between +14 and -9%, and Pearson correlation coefficients between 0.5 and 0.8 for the different azimuth viewing directions.</p>


2021 ◽  
Author(s):  
Gerrit Kuhlmann ◽  
Ka Lok Chan ◽  
Sebastian Donner ◽  
Ying Zhu ◽  
Marc Schwaerzel ◽  
...  

Abstract. We present results from the Munich NO2 imaging campaign (MuNIC) where nitrogen dioxide (NO2) near-surface concentrations (NSC) and vertical column densities (VCD) were measured with stationary, mobile and airborne in situ and remote sensing instruments. The most intensive day of the campaign was 7 July 2016, when the NO2 VCD field was mapped with the Airborne Prism Experiment (APEX) imaging spectrometer. The spatial distribution of APEX VCDs was rather smooth with a horizontal gradient between lower values upwind and higher values downwind of the city center. The NO2 map had no pronounced source signatures except for the plumes of two combined heat and power plants (CHP). The APEX VCDs agree well with mobile MAX-DOAS observations from two vehicles conducted in the same afternoon (r = 0.55). In contrast to the VCDs, mobile NSC measurements revealed high spatial and temporal variability along the roads with highest values in congested areas and tunnels. The NOx emissions of the two CHP plants were estimated from the APEX observations using a mass-balance approach. The estimates are higher than reported emissions, but uncertainties are high because the campaign day was unstable and convective, resulting in low and highly variable wind speeds. The NOx emission estimates are consistent with CO2 emissions determined from two ground-based FTIR instruments operated near one CHP plant. We conclude that airborne imaging spectrometers are well suited to map the spatial distribution of NO2 VCDs over large areas. The emission plumes of point sources can be detected in the APEX observations, but accurate flow fields are essential to estimate emissions with sufficient accuracy. The application of airborne imaging spectrometers for studying NSCs, for example as input for epidemiological studies, is less straight forward and requires to account for the non-trivial relationship between VCDs and NSCs.


2021 ◽  
Vol 18 (1) ◽  
pp. 145-162
Author(s):  
B Butchibabu ◽  
Prosanta Kumar Khan ◽  
P C Jha

Abstract This study aims for the protection of a crude-oil pipeline, buried at a shallow depth, against a probable environmental hazard and pilferage. Both surface and borehole geophysical techniques such as electrical resistivity tomography (ERT), ground penetrating radar (GPR), surface seismic refraction tomography (SRT), cross-hole seismic tomography (CST) and cross-hole seismic profiling (CSP) were used to map the vulnerable zones. Data were acquired using ERT, GPR and SRT along the pipeline for a length of 750 m, and across the pipeline for a length of 4096 m (over 16 profiles of ERT and SRT with a separation of 50 m) for high-resolution imaging of the near-surface features. Borehole techniques, based on six CSP and three CST, were carried out at potentially vulnerable locations up to a depth of 30 m to complement the surface mapping with high-resolution imaging of deeper features. The ERT results revealed the presence of voids or cavities below the pipeline. A major weak zone was identified at the central part of the study area extending significantly deep into the subsurface. CSP and CST results also confirmed the presence of weak zones below the pipeline. The integrated geophysical investigations helped to detect the old workings and a deformation zone in the overburden. These features near the pipeline produced instability leading to deformation in the overburden, and led to subsidence in close vicinity of the concerned area. The area for imminent subsidence, proposed based on the results of the present comprehensive geophysical investigations, was found critical for the pipeline.


2010 ◽  
Vol 6 (S272) ◽  
pp. 398-399 ◽  
Author(s):  
Carol E. Jones ◽  
Christopher Tycner ◽  
Jessie Silaj ◽  
Ashly Smith ◽  
T. A. Aaron Sigut

AbstractHα high resolution spectroscopy combined with detailed numerical models is used to probe the physical conditions, such as density, temperature, and velocity of Be star disks. Models have been constructed for Be stars over a range in spectral types and inclination angles. We find that a variety of line shapes can be obtained by keeping the inclination fixed and changing density alone. This is due to the fact that our models account for disk temperature distributions self-consistently from the requirement of radiative equilibrium. A new analytical tool, called the variability ratio, was developed to identify emission-line stars at particular stages of variability. It is used in this work to quantify changes in the Hα equivalent widths for our observed spectra.


2015 ◽  
Vol 15 (19) ◽  
pp. 10983-10998 ◽  
Author(s):  
J. C. Péré ◽  
B. Bessagnet ◽  
V. Pont ◽  
M. Mallet ◽  
F. Minvielle

Abstract. In this work, impact of aerosol solar extinction on the photochemistry over eastern Europe during the 2010 wildfires episode is discussed for the period from 5 to 12 August 2010, which coincides to the peak of fire activity. The methodology is based on an online coupling between the chemistry-transport model CHIMERE (extended by an aerosol optical module) and the radiative transfer code TUV. Results of simulations indicate an important influence of the aerosol solar extinction, in terms of intensity and spatial extent, with a reduction of the photolysis rates of NO2 and O3 up to 50 % (in daytime average) along the aerosol plume transport. At a regional scale, these changes in photolysis rates lead to a 3–15 % increase in the NO2 daytime concentration and to an ozone reduction near the surface of 1–12 %. The ozone reduction is shown to occur over the entire boundary layer, where aerosols are located. Also, the total aerosol mass concentration (PM10) is shown to be decreased by 1–2 %, on average during the studied period, caused by a reduced formation of secondary aerosols such as sulfates and secondary organics (4–10 %) when aerosol impact on photolysis rates is included. In terms of model performance, comparisons of simulations with air quality measurements at Moscow indicate that an explicit representation of aerosols interaction with photolysis rates tend to improve the estimation of the near-surface concentration of ozone and nitrogen dioxide as well as the formation of inorganic aerosol species such as ammonium, nitrates and sulfates.


2006 ◽  
Vol 36 (5) ◽  
pp. 827-846 ◽  
Author(s):  
Toru Miyama ◽  
Julian P. McCreary ◽  
Debasis Sengupta ◽  
Retish Senan

Abstract Variability of the wind field over the equatorial Indian Ocean is spread throughout the intraseasonal (10–60 day) band. In contrast, variability of the near-surface υ field in the eastern, equatorial ocean is concentrated at biweekly frequencies and is largely composed of Yanai waves. The excitation of this biweekly variability is investigated using an oceanic GCM and both analytic and numerical versions of a linear, continuously stratified (LCS) model in which solutions are represented as expansions in baroclinic modes. Solutions are forced by Quick Scatterometer (QuikSCAT) winds (the model control runs) and by idealized winds having the form of a propagating wave with frequency σ and wavenumber kw. The GCM and LCS control runs are remarkably similar in the biweekly band, indicating that the dynamics of biweekly variability are fundamentally linear and wind driven. The biweekly response is composed of local (nonradiating) and remote (Yanai wave) parts, with the former spread roughly uniformly along the equator and the latter strengthening to the east. Test runs to the numerical models separately forced by the τx and τy components of the QuikSCAT winds demonstrate that both forcings contribute to the biweekly signal, the response forced by τy being somewhat stronger. Without mixing, the analytic spectrum for Yanai waves forced by idealized winds has a narrowband (resonant) response for each baroclinic mode: Spectral peaks occur whenever the wavenumber of the Yanai wave for mode n is sufficiently close to kw and they shift from biweekly to lower frequencies with increasing modenumber n. With mixing, the higher-order modes are damped so that the largest ocean response is restricted to Yanai waves in the biweekly band. Thus, in the LCS model, resonance and mixing act together to account for the ocean's favoring the biweekly band. Because of the GCM's complexity, it cannot be confirmed that vertical mixing also damps its higher-order modes; other possible processes are nonlinear interactions with near-surface currents, and the model's low vertical resolution below the thermocline. Test runs to the LCS model show that Yanai waves from several modes superpose to form a beam (wave packet) that carries energy downward as well as eastward. Reflections of such beams from the near-surface pycnocline and bottom act to maintain near-surface energy levels, accounting for the eastward intensification of the near-surface, equatorial υ field in the control runs.


Sign in / Sign up

Export Citation Format

Share Document