scholarly journals A High-Resolution (20 m) Simulation of Nighttime Low Temperature Inducing Agricultural Crop Damage with the WRF–LES Modeling System

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1562
Author(s):  
Ilseok Noh ◽  
Seung-Jae Lee ◽  
Seoyeon Lee ◽  
Sun-Jae Kim ◽  
Sung-Don Yang

In Korea, sudden cold weather in spring occurs repeatedly every year and causes severe damage to field crops and fruit trees. Detailed forecasting of the daily minimum or suddenly decreasing temperature, closely related to the local topography, has been required in the farmer community. High-resolution temperature models based on empirical formulas or statistical downscaling have fundamental limitations, making it difficult to perform biophysical application and mechanism explanation on small-scale complex terrains. Weather Research and Forecasting–Large Eddy Simulation (WRF–LES) can provide a dynamically and physically scientific tool to be easily applied for farm-scale numerical weather predictions. However, it has been applied mainly for urban areas and in convective boundary layer studies until now. In this study, 20 m resolution WRF–LES simulation of nighttime near-surface temperature and wind was performed for two cold spring weather events that induced significant crop damages in the apple production area and the results were verified with automatic weather station observation data. The study showed that the maximum mean bias of temperature was −1.75 °C and the minimum was −0.68 °C in the spring, while the root mean square error varied between 2.13 and 3.00 °C. The minimum temperature and its duration significantly affected the crop damage, and the WRF–LES could accurately simulate both features. This implies that the application of WRF–LES, with proper nest-domain configuration and harmonized physical options, to the prediction of nighttime frost in rural areas has promising feasibility for orchard- or farm-scale frost prevention and low-temperature management.

2021 ◽  
Author(s):  
Benjamin Stocker ◽  
Shersingh Tumber-Davila ◽  
Alexandra Konings ◽  
Rob Jackson

<p>The rooting zone water storage capacity (S) defines the total amount of water available to plants for transpiration during rain-free periods. Thereby, S determines the sensitivity of carbon and water exchanges between the land surface and the atmosphere, controls the sensitivity of ecosystem functioning to progressive drought conditions, and mediates feedbacks between soil moisture and near-surface air temperatures. While being a central quantity for water-carbon-climate coupling, S is inherently difficult to observe. Notwithstanding scarcity of observations, terrestrial biosphere and Earth system models rely on the specification of S either directly or indirectly through assuming plant rooting depth.</p><p>Here, we model S based on the assumption that plants size their rooting depth to maintain function under the expected maximum cumulative water deficit (CWD), occurring with a return period of 40 years (CWD<sub>X40</sub>), following Gao et al. (2014). CWD<sub>X40</sub> is “translated” into a rooting depth by accounting for the soil texture. CWD is defined as the cumulative evapotranspiration (ET) minus precipitation, where ET is estimated based on thermal infrared remote sensing (ALEXI-ET), and precipitation is from WATCH-WFDEI, modified by accounting for snow accumulation and melt. In contrast to other satellite remote sensing-based ET products, ALEXI-ET makes no a priori assumption about S and, as our evaluation shows, exhibits no systematic bias with increasing CWD. It thus provides a robust observation of surface water loss and enables estimation of S with global coverage at 0.05° (~5 km) resolution.</p><p>Modelled S and its variations across biomes is largely consistent with observed rooting depth, provided as ecosystem-level maximum estimates by Schenk et al. (2002), and a recently compiled comprehensive plant-level dataset. In spite of the general agreement of modelled and observed rooting depth across large climatic gradients, comparisons between local observations and global model predictions are mired by a scale mismatch that is particularly relevant for plant rooting depth, for which the small-scale topographical setting and hydrological conditions, in particular the water table depth, pose strong controls.</p><p>To resolve this limitation, we investigate the sensitivity of photosynthesis (estimated by sun-induced fluorescence, SIF), and of the evaporative fraction (EF, defined as ET over net radiation) to CWD. By employing first principles for the constraint of rooting zone water availability on ET and photosynthesis, it can be derived how their sensitivity to the increasing CWD relates to S. We make use of this relationship to provide an alternative and independent estimate of S (S<sub>dSIF</sub> and S<sub>dEF</sub>), informed by Earth observation data, to which S, modelled using CWD<sub>X40</sub>, can be compared. Our comparison reveals a strong correlation (R<sup>2</sup>=0.54) and tight consistency in magnitude between the two approaches for estimating S. </p><p>Our analysis suggests adaptation of plant structure to prevailing climatic conditions and drought regimes across the globe and at catchment scale and demonstrates its implications for land-atmosphere exchange. Our global high-resolution mapping of S reveals contrasts between plant growth forms (grasslands vs. forests) and a discrepant importance across the landscape of plants’ access to water stored at depth, and enables an observation-informed specification of S in global models.</p>


2020 ◽  
Author(s):  
Frank Siegismund ◽  
Xanthi Oikonomidou ◽  
Philipp Zingerle

<p>The Dynamic ocean Topography (DT) describes the deviation of the true ocean surface from a hypothetical equilibrium state ocean at rest forced by gravity alone. With the geostrophic surface currents obtained from its gradients the DT is an essential parameter for describing the ocean dynamics. Observation-based global temporal Mean geodetic DTs (MDTs) are obtained from the difference of altimetric Mean Sea Surface (MSS) and the geoid height, that equipotential surface of gravity closest to the ocean surface.</p><p>The geoid is provided either as a satellite-only, or a combined model including in addition gravity anomalies derived from satellite altimetry and ground data. In recent years the focus was on satellite-only models, produced from new space-born observations obtained from the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and Ocean Circulation Explorer (GOCE) satellite missions. Moreover, combined geoid models are only cautiously used for MDT calculation, since it is still in question to what extent the gravity information obtained from altimetry is distorted by the MDT information included therein and how this translates into errors of the MDT.</p><p>Here we want to concentrate on MDT models based on recent combined geoid models. An assessment is provided based on comparisons to near-surface drifter data from the Global Drifter Program (GDP). Besides providing a general, global assessment, we focus on signal content on small scales, addressing mainly two questions: 1) Do MDTs obtained from combined geoid models contain signal for scales smaller than resolvable by the<br>satellite-only models? 2) Is there a maximum resolution beyond which no signal is detectable?</p><p>Until recently, these questions couldn't be answered since low resolution MDTs usually contained strong wavy-structured errors and thus needed a strong spatial filtering thereby killing the smallest scales resolved in the MDT. These errors, which worsen with lower resolution, are caused by Gibbs effects provoked by imperfections in bringing the high resolution ocean-only MSS models into spectral consistency with the much lower resolved global geoid model. A new methodology, however, improves the necessary globalization of the MSS. After subtraction of the geoid model, subsequent cutting-off the signal beyond a specific spherical harmonic degree and order (d/o) results in an MDT without any Gibbs effects, also for low resolution models.</p><p>To answer the questions posed above applying the new methodology, the scale-dependent signal in MDTs for different geoid models is presented for a list of cut off d/os. To minimize the influence of noise on the results we concentrate on strong signal Western Boundary Currents like the Gulf Stream and the Kuroshio. For the Gulf Stream results of a high resolution hydrodynamic model are available and presented as an independent method to estimate the scale dependent signal.</p>


2019 ◽  
Vol 34 (4) ◽  
pp. 959-983 ◽  
Author(s):  
Morten Køltzow ◽  
Barbara Casati ◽  
Eric Bazile ◽  
Thomas Haiden ◽  
Teresa Valkonen

AbstractIncreased human activity in the Arctic calls for accurate and reliable weather predictions. This study presents an intercomparison of operational and/or high-resolution models in an attempt to establish a baseline for present-day Arctic short-range forecast capabilities for near-surface weather (pressure, wind speed, temperature, precipitation, and total cloud cover) during winter. One global model [the high-resolution version of the ECMWF Integrated Forecasting System (IFS-HRES)], and three high-resolution, limited-area models [Applications of Research to Operations at Mesoscale (AROME)-Arctic, Canadian Arctic Prediction System (CAPS), and AROME with Météo-France setup (MF-AROME)] are evaluated. As part of the model intercomparison, several aspects of the impact of observation errors and representativeness on the verification are discussed. The results show how the forecasts differ in their spatial details and how forecast accuracy varies with region, parameter, lead time, weather, and forecast system, and they confirm many findings from mid- or lower latitudes. While some weaknesses are unique or more pronounced in some of the systems, several common model deficiencies are found, such as forecasting temperature during cloud-free, calm weather; a cold bias in windy conditions; the distinction between freezing and melting conditions; underestimation of solid precipitation; less skillful wind speed forecasts over land than over ocean; and difficulties with small-scale spatial variability. The added value of high-resolution limited area models is most pronounced for wind speed and temperature in regions with complex terrain and coastlines. However, forecast errors grow faster in the high-resolution models. This study also shows that observation errors and representativeness can account for a substantial part of the difference between forecast and observations in standard verification.


2018 ◽  
Vol 12 (10) ◽  
pp. 3137-3160 ◽  
Author(s):  
Franziska Gerber ◽  
Nikola Besic ◽  
Varun Sharma ◽  
Rebecca Mott ◽  
Megan Daniels ◽  
...  

Abstract. Snow distribution in complex alpine terrain and its evolution in the future climate is important in a variety of applications including hydropower, avalanche forecasting and freshwater resources. However, it is still challenging to quantitatively forecast precipitation, especially over complex terrain where the interaction between local wind and precipitation fields strongly affects snow distribution at the mountain ridge scale. Therefore, it is essential to retrieve high-resolution information about precipitation processes over complex terrain. Here, we present very-high-resolution Weather Research and Forecasting model (WRF) simulations (COSMO–WRF), which are initialized by 2.2 km resolution Consortium for Small-scale Modeling (COSMO) analysis. To assess the ability of COSMO–WRF to represent spatial snow precipitation patterns, they are validated against operational weather radar measurements. Estimated COSMO–WRF precipitation is generally higher than estimated radar precipitation, most likely due to an overestimation of orographic precipitation enhancement in the model. The high precipitation amounts also lead to a higher spatial variability in the model compared to radar estimates. Overall, an autocorrelation and scale analysis of radar and COSMO–WRF precipitation patterns at a horizontal grid spacing of 450 m show that COSMO–WRF captures the spatial variability normalized by the domain-wide variability in precipitation patterns down to the scale of a few kilometers. However, simulated precipitation patterns systematically show a lower variability on the smallest scales of a few hundred meters compared to radar estimates. A comparison of spatial variability for different model resolutions gives evidence for an improved representation of local precipitation processes at a horizontal resolution of 50 m compared to 450 m. Additionally, differences of precipitation between 2830 m above sea level and the ground indicate that near-surface processes are active in the model.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 752
Author(s):  
Zhaolin Gu ◽  
Yuanping He ◽  
Yunwei Zhang ◽  
Junwei Su ◽  
Renjian Zhang ◽  
...  

The local strong sandstorms (LSS), similar to haboobs in Sahara and the North America, often occur suddenly, in tens of minutes during the late afternoon, and before dusk in deserts in China, causing a significant impact on the local atmospheric environment. The Sudan haboob or American haboob often appears in the wet season, followed by thunderstorm events. In contrast, the LSS in China appears most frequently in relatively dry season. The lack of observational data in weather conditions before their formation, during their development and after their disappearance have hindered our understanding of the evolution mechanism of LSS/haboobs. This paper provides a review of the current status and model studies on LSS/haboobs in different time and space to characterize the weather conditions and triggering mechanisms for LSS/haboobs occurrence, as well as highlight the subject for further understanding of LSS/haboobs. LSS are always followed by the occurrence of a dry squall. The interaction of dust radiation heating in the near-surface mixing layer with a mesoscale anticyclone air mass (cold-air pool) in the upper layer is the key process that leads to an LSS. Haboobs are followed by the occurrence of a wet squall. The release of latent heat due to the condensation of water vapor, involving moist convection and cold downdraughts, is the main driving force that cause the occurrence of a haboob. For a better understanding of the characteristics of the wind-sand two-phase flow and the mechanism of energy dissipation in LSS/haboobs, further accumulation of meteorological observation data and small-scale multiple-phase numerical simulations are required.


2012 ◽  
Vol 51 (10) ◽  
pp. 1889-1903 ◽  
Author(s):  
Martin Kücken ◽  
Detlef Hauffe ◽  
Hermann Österle

AbstractIn this article, the authors examine the effect of a high-resolution grid (grid resolution lower than 3 km) in the context of a realistic climate simulation. For this purpose global simulation results of the German Weather Service were dynamically downscaled in a one-way nesting approach to 2.8 km using the regional forecast model of the Consortium for Small-Scale Modeling (COSMO) of the German Weather Service. The simulations were performed for the region of central Europe in 2003. In particular, the authors investigate whether COSMO adequately handles extreme events such as the persistent drought and heat of the summer of 2003. Comparisons of the simulated atmospheric conditions in terms of 2-m temperature, mean sea level pressure, and precipitation demonstrated a good correspondence to their associated observational data. Simulation results and observed data are both given as time series at locations such as grid cells or station locations. By cluster analysis a representation of the spatial structure for observation data and simulation results is found. The kappa statistic evaluates how well the two spatial structures correspond to each other. The different kappa variants are helpful to diagnose where shortcomings of the simulation results are located.


Author(s):  
Johannes Schulz-Stellenfleth ◽  
Susanne Lehner ◽  
Thomas Ko¨nig ◽  
Stephan Brusch

It is well known that satellite radar systems as flown on the ERS-2 or ENVISAT satellite are capable of providing high resolution information on the near surface ocean wind field and ocean waves independent of light or cloud conditions. In this presentation an overview is given of the retrieval of different geophysical parameters which are relevant for the optimal siting, the design and the operation of offshore wind farms and wave energy plants. Different examples of high resolution wind fields acquired over the wind parks “Horns Rev” and “Butendiek” in the North Sea are presented. Both image mode scenes of 100 km by 100 km size as well as wide swath images of 500 km by 500 km size are used for the investigation. Special emphasis is put on the use of the radar data for the analysis of small scale atmospheric phenomena like shadowing or turbulence as well as the estimation of ocean wave parameters like the significant wave height. High resolution maps of ocean wave parameters like significant wave height or wave period are presented. The presentation will also include the application of more sophisticated techniques like the use of Dual-Polarisation data available from ENVISAT. The final part of the presentation will deal with the next generation radar satellite TerraSAR-X launched in 2007. The spatial resolution of this instrument is in the order of 1 m, which is an order of magnitude better than the ENVISAT and ERS satellites used up to now. It has furthermore interferometric capabilities, which enable the derivation of ocean current information. The potential as well as the limitations of this new instrument with respect to the offshore windfarming and wave farming sector will be discussed.


2001 ◽  
Vol 73 (3) ◽  
pp. 563-570 ◽  
Author(s):  
A.J. Duncan ◽  
R.W. Mayes ◽  
S.A. Young ◽  
C.S. Lamb ◽  
P. MacEachern

AbstractA patch choice experiment was conducted in which sheep were offered choices between patches of upland pasture which differed in their sward height and degree of shelter from the wind. Experimental plots (48 m ✕ 4 m) were divided into 4 m ✕ 4 m patches. Alternate patches were mown in advance of the experiment to create nominal sward heights of 4 and 6 cm. Portable shelters were erected on the windward side of alternate patches to reduce wind speed on sheltered patches by half. The four treatment combinations used to test the influence of sward height, shelter and their interaction on patch use were: patchy swards with and without shelters and uniform swards with and without shelters. Five adult sheep per treatment were observed while grazing the plots for 6 h/day on five occasions (days) in autumn. Patch choice was measured by video observation and using a patch marker technique. On none of the observation days was the weather condition sufficiently severe that animals were outside their thermoneutral zone. There was a strong influence of sward height on patch use with sheep spending 0·382 of their time on short swards when patchy swards were offered compared with 0·503 of their time on equivalent areas when swards were uniform. Thermal conditions did not influence patch choice with sheep spending an average of 0·442 of their time on equivalent patches whether they were sheltered or not. There was no interaction between sward conditions and thermal conditions on the amount of time spent on different patches. Data from the patch marker method supported observation data. The results confirm that sheep are resilient to extremes of cold weather commonly occurring at temperate latitudes and suggest that thermal constraints have minimal influence on the small-scale foraging movements of sheep, as long as they remain within their thermoneutral zone.


Sign in / Sign up

Export Citation Format

Share Document