scholarly journals Correction: Gulakhmadov et al. Evaluation of the CRU TS3.1, APHRODITE_V1101, and CFSR Datasets in Assessing Water Balance Components in the Upper Vakhsh River Basin in Central Asia. Atmosphere 2021, 12, 1334

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1641
Author(s):  
Aminjon Gulakhmadov ◽  
Xi Chen ◽  
Manuchekhr Gulakhmadov ◽  
Zainalobudin Kobuliev ◽  
Nekruz Gulahmadov ◽  
...  

The authors were not aware of errors that were made during the proofreading phase and would hence wish to make the below-mentioned corrections to this paper [...]

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1334
Author(s):  
Aminjon Gulakhmadov ◽  
Xi Chen ◽  
Manuchekhr Gulakhmadov ◽  
Zainalobudin Kobuliev ◽  
Nekruz Gulahmadov ◽  
...  

In this study, the applicability of three gridded datasets was evaluated (Climatic Research Unit (CRU) Time Series (TS) 3.1, “Asian Precipitation—Highly Resolved Observational Data Integration Toward the Evaluation of Water Resources” (APHRODITE)_V1101, and the climate forecast system reanalysis dataset (CFSR)) in different combinations against observational data for predicting the hydrology of the Upper Vakhsh River Basin (UVRB) in Central Asia. Water balance components were computed, the results calibrated with the SUFI-2 approach using the calibration of soil and water assessment tool models (SWAT–CUP) program, and the performance of the model was evaluated. Streamflow simulation using the SWAT model in the UVRB was more sensitive to five parameters (ALPHA_BF, SOL_BD, CN2, CH_K2, and RCHRG_DP). The simulation for calibration, validation, and overall scales showed an acceptable correlation between the observed and simulated monthly streamflow for all combination datasets. The coefficient of determination (R2) and Nash–Sutcliffe efficiency (NSE) showed “excellent” and “good” values for all datasets. Based on the R2 and NSE from the “excellent” down to “good” datasets, the values were 0.91 and 0.92 using the observational datasets, CRU TS3.1 (0.90 and 0.90), APHRODITE_V1101+CRU TS3.1 (0.74 and 0.76), APHRODITE_V1101+CFSR (0.72 and 0.78), and CFSR (0.67 and 0.74) for the overall scale (1982–2006). The mean annual evapotranspiration values from the UVRB were about 9.93% (APHRODITE_V1101+CFSR), 25.52% (APHRODITE_V1101+CRU TS3.1), 2.9% (CFSR), 21.08% (CRU TS3.1), and 27.28% (observational datasets) of annual precipitation (186.3 mm, 315.7 mm, 72.1 mm, 256.4 mm, and 299.7 mm, out of 1875.9 mm, 1236.9 mm, 2479 mm, 1215.9 mm, and 1098.5 mm). The contributions of the snowmelt to annual runoff were about 81.06% (APHRODITE_V1101+CFSR), 63.12% (APHRODITE_V1101+CRU TS3.1), 82.79% (CFSR), 81.66% (CRU TS3.1), and 67.67% (observational datasets), and the contributions of rain to the annual flow were about 18.94%, 36.88%, 17.21%, 18.34%, and 32.33%, respectively, for the overall scale. We found that gridded climate datasets can be used as an alternative source for hydrological modeling in the Upper Vakhsh River Basin in Central Asia, especially in scarce-observation regions. Water balance components, simulated by the SWAT model, provided a baseline understanding of the hydrological processes through which water management issues can be dealt with in the basin.


Author(s):  
O.I. Lukіanets ◽  
V.V Grebіn

In the article, in order to identify the generalized role of changes that occurred in the Psel River basin with such climatic indicators as air temperature, amount of precipitation, their form of precipitation, the structure of water bodies feeding, as well as water flow in the modern period, the average water balance for a long-term period was calculated the Psel river basin near the town of Gadyach. In general, the water balance equation shows the ratio of water input and consumption within a river basin, taking into account changes in its reserves over a selected time interval and allows one to assess the relationship of its individual components. In the article identifies changes in the ratio between the inflow (amount of precipitation) and consumption of water (total evaporation and runoff) for two periods – the climatic norm of 1961-1990 and modern 1990-2019. Analysis of the temporal dynamics of the water balance components of the Psel river basin showed that the values of the water balance components within the Psel river basin near the town of Gadyach in the modern period have decreased in comparison with the period of the climatic norm – the amount of precipitation by 6,2%, water flow by 17,5%, evapotranspiration by 1,8%. But, analyzing the relationship between the inflow and outflow of water in the basin for the two study periods 1961-1990 and 1990-2019, it can be stated that during the period of the climatic norm, the percentage of water flow from the total precipitation was greater (coefficient water flow 16.2%) than in the modern period (coefficient water flow 14.2%). With regard to total evaporation in water-balance ratios, its share in the water-balance ratio has increased over the modern period (1990-2019). If during the period of climatic normal (1961-1990) the aridity coefficient was 83.8%, then in the modern period, it is 85.8%. That is, the “redistribution” of the water volumes of atmospheric precipitation took place towards the total evaporation with a decrease in the volume of water used to form the water runoff. For the basin of the river Psel – the city of Gadyach in the modern period on the average ≈ 11 mm (or ≈ 130000000 m3) evaporate instead of replenishment of water resources. In the previous period of 1961-1990, on the contrary, ≈ 12 mm (or 136000000 m3) did not evaporate, but flowed into the water bodies of the basin.


Water ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 472 ◽  
Author(s):  
Zhenliang Yin ◽  
Qi Feng ◽  
Songbing Zou ◽  
Linshan Yang

Water ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Winai Wangpimool ◽  
Kobkiat Pongput ◽  
Nipon Tangtham ◽  
Saowanee Prachansri ◽  
Philip Gassman

Water resources planning and management of a region requires an understanding of the water balance in the region. The Soil and Water Assessment Tool (SWAT) with QGIS interface (QSWAT) has been used here to arrive at the water balance components in the Palapuzha watershed of Valapattanam river basin in Kerala. Valapattanam river drains an area of 1867 sq.km. with 456 sq.km. area in Karnataka State. The river basin receives an average annual rainfall of 3600 mm. The Palapuzha watershed drains an area of 237.25 sq.km with an average annual rainfall of 4562 mm. The QSWAT model has been calibrated and validated using data for a period of eight years (2000-2007) for which both rainfall and streamflow data are available. The model was successful in simulating monthly streamflow during the calibration and validation periods with Nash Sutcliffe efficiency and correlation co-efficient greater than 0.75 and percent bias less than 10%, showing that the model is very good for predicting streamflow in Valapattanam river basin. This calibrated model was used to arrive at the different water balance components in the Palapuzha watershed. The results obtained will be useful for the sustainable development and planning of the water resources system in the highland humid tropical watersheds


2020 ◽  
Vol 24 (2) ◽  
pp. 1-20
Author(s):  
Gregory J. McCabe ◽  
David M. Wolock ◽  
Connie A. Woodhouse ◽  
Gregory T. Pederson ◽  
Stephanie A. McAfee ◽  
...  

AbstractThe Colorado River basin (CRB) supplies water to approximately 40 million people and is essential to hydropower generation, agriculture, and industry. In this study, a monthly water balance model is used to compute hydroclimatic water balance components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff) for the period 1901–2014 across the entire CRB. The time series of monthly runoff is aggregated to compute water-year runoff and then used to identify drought periods in the basin. For the 1901–2014 period, eight basinwide drought periods were identified. The driest drought period spanned years 1901–04, whereas the longest drought period occurred during 1943–56. The eight droughts were primarily driven by winter precipitation deficits rather than warm temperature anomalies. In addition, an analysis of prehistoric drought for the CRB—computed using tree-ring-based reconstructions of the Palmer drought severity index—indicates that during some past centuries drought frequency was higher than during the twentieth century and that some centuries experienced droughts that were much longer than those during the twentieth century. More frequent or longer droughts than those that occurred during the twentieth century, combined with continued warming associated with climate change, may lead to substantial future water deficits in the CRB.


Sign in / Sign up

Export Citation Format

Share Document